Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 17(12): 1352-1360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27776107

RESUMO

RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.


Assuntos
Actinas/metabolismo , Linfócitos B/imunologia , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Síndromes de Imunodeficiência/genética , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Adolescente , Inibidores da Angiogênese/farmacologia , Linfócitos B/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Criança , Citotoxicidade Imunológica/genética , Análise Mutacional de DNA , Dineínas/metabolismo , Feminino , Células HEK293 , Humanos , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/tratamento farmacológico , Células Jurkat , Células Matadoras Naturais/efeitos dos fármacos , Lenalidomida , Masculino , Mutação/genética , Linhagem , RNA Interferente Pequeno/genética , Linfócitos T/efeitos dos fármacos , Talidomida/análogos & derivados , Talidomida/farmacologia
3.
Pediatr Res ; 95(3): 835-842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37758866

RESUMO

BACKGROUND: Lower respiratory tract infection (LRTI) including pneumonia, bronchitis, and bronchiolitis is the sixth leading cause of mortality around the world and leading cause of death in children under 5 years. Systemic immune response to viral infection is well characterized. However, there is little data regarding the immune response at the upper respiratory tract mucosa. The upper respiratory mucosa is the site of viral entry, initial replication and the first barrier against respiratory infections. Lower respiratory tract samples can be challenging to obtain and require more invasive procedures. However, nasal wash (NW) samples from the upper respiratory tract can be obtained with minimal discomfort to the patient. METHOD: In a pilot study, we developed a protocol using NW samples obtained from hospitalized children with LRTI that enables single cell RNA sequencing (scRNA-seq) after the NW sample is methanol-fixed. RESULTS: We found no significant changes in scRNA-seq qualitative and quantitative parameters between methanol-fixed and fresh NW samples. CONCLUSIONS: We present a novel protocol to enable scRNA-seq in NW samples from children admitted with LRTI. With the inherent challenges associated with clinical samples, the protocol described allows for processing flexibility as well as multicenter collaboration. IMPACT: There are no significant differences in scRNA-seq qualitative and quantitative parameters between methanol fixed and fresh Pediatric Nasal wash samples. The study demonstrates the effectiveness of methanol fixation process on preserving respiratory samples for single cell sequencing. This enables Pediatric Nasal wash specimen for single cell RNA sequencing in pediatric patients with respiratory tract infection and allows processing flexibility and multicenter collaboration.


Assuntos
Bronquiolite , Pneumonia , Infecções Respiratórias , Humanos , Criança , Lactente , Pré-Escolar , Metanol , Projetos Piloto
4.
Nature ; 561(7723): 331-337, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185905

RESUMO

Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.

5.
Dev Biol ; 466(1-2): 1-11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800756

RESUMO

The distal nephron and collecting duct segments of the mammalian kidney consist of intercalated cell types intermingled among principal cell types. Notch signaling ensures that a sufficient number of cells select a principal instead of an intercalated cell fate. However, the precise mechanisms by which Notch signaling patterns the distal nephron and collecting duct cell fates is unknown. Here we observed that Hes1, a direct target of Notch signaling pathway, is required within the mouse developing collecting ducts for repression of Foxi1 expression, an essential intercalated cell specific transcription factor. Interestingly, inactivation of Foxi1 in Hes1-deficient collecting ducts rescues the deficiency in principal cell fate selection, overall urine concentrating deficiency, and reduces the occurrence of hydronephrosis. However, Foxi1 inactivation does not rescue the reduction in expression of all principal cell genes in the Hes1-deficient kidney collecting duct cells that select the principal cell fate. Additionally, suppression of Notch/Hes1 signaling in mature principal cells reduces principal cell gene expression without activating Foxi1. We conclude that Hes1 is a Notch signaling target that is essential for normal patterning of the collecting ducts with intermingled cell types by repressing Foxi1, and for maintenance of principal cell gene expression independent of repressing Foxi1.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/deficiência , Animais , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Mutantes , Receptores Notch/genética , Fatores de Transcrição HES-1/metabolismo
6.
FASEB J ; 34(7): 9512-9530, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474964

RESUMO

Alagille syndrome patients present with loss of function mutations in either JAG1 or NOTCH2. About 40%-50% of patients have kidney abnormalities, and frequently display multicystic, dysplastic kidneys. Additionally, gain-of-function mutations in NOTCH2 are associated with cystic kidneys in Hajdu-Cheney syndrome patients. How perturbations in Notch signaling cause renal tubular cysts remains unclear. Here, we have determined that reduced Notch signaling mediated transcription by ectopic expression of dominant-negative mastermind-like (dnMaml) peptide in the nephrogenic epithelia from after the s-shaped body formation and in the developing collecting ducts results in proximal tubular and collecting duct cysts, respectively. An acute inhibition of Notch signaling for two days during kidney development is sufficient to disrupt tubule formation, and significantly increases Akap12 expression. Ectopic expression of Akap12 in renal epithelia results in abnormally long primary cilia similar to that observed in Notch-signaling-deficient epithelia. Both loss of Notch signaling and elevated Akap12 expression disrupt the ability of renal epithelial cells to form spherical structures with a single lumen when grown embedded in matrix. Interestingly, Akap12 can inhibit Notch signaling mediated transcription, which likely explains how both loss of Notch signaling and ectopic expression of Akap12 result in similar renal epithelial abnormalities. We conclude that Notch signaling regulates Akap12 expression while also ensuring normal primary cilia length and renal epithelial morphogenesis, and suggest that one aspect of diseases associated with defective Notch signaling, such as Alagille syndrome, maybe mechanistically related to ciliopathies.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cílios/fisiologia , Regulação da Expressão Gênica , Túbulos Renais/citologia , Morfogênese , Proteínas Nucleares/fisiologia , Receptor Notch2/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas de Ciclo Celular/genética , Feminino , Genes Dominantes , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch2/genética
7.
J Am Soc Nephrol ; 30(1): 110-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514723

RESUMO

BACKGROUND: Notch signaling is required during kidney development for nephron formation and principal cell fate selection within the collecting ducts. Whether Notch signaling is required in the adult kidney to maintain epithelial diversity, or whether its loss can trigger principal cell transdifferentiation (which could explain acquired diabetes insipidus in patients receiving lithium) is unclear. METHODS: To investigate whether loss of Notch signaling can trigger principal cells to lose their identity, we genetically inactivated Notch1 and Notch2, inactivated the Notch signaling target Hes1, or induced expression of a Notch signaling inhibitor in all of the nephron segments and collecting ducts in mice after kidney development. We examined renal function and cell type composition of control littermates and mice with conditional Notch signaling inactivation in adult renal epithelia. In addition, we traced the fate of genetically labeled adult kidney collecting duct principal cells after Hes1 inactivation or lithium treatment. RESULTS: Notch signaling was required for maintenance of Aqp2-expressing cells in distal nephron and collecting duct segments in adult kidneys. Fate tracing revealed mature principal cells in the inner stripe of the outer medulla converted to intercalated cells after genetic inactivation of Hes1 and, to a lesser extent, lithium treatment. Hes1 ensured repression of Foxi1 to prevent the intercalated cell program from turning on in mature Aqp2+ cell types. CONCLUSIONS: Notch signaling viaHes1 regulates maintenance of mature renal epithelial cell states. Loss of Notch signaling or use of lithium can trigger transdifferentiation of mature principal cells to intercalated cells in adult kidneys.


Assuntos
Aquaporina 2/metabolismo , Lítio/farmacologia , Receptor Notch1/genética , Receptor Notch2/genética , Equilíbrio Hidroeletrolítico/genética , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Homeostase/genética , Rim/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Camundongos , Receptor Notch1/efeitos dos fármacos , Receptor Notch2/efeitos dos fármacos , Transdução de Sinais/genética , Equilíbrio Hidroeletrolítico/fisiologia
8.
Blood ; 130(25): 2739-2749, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29079582

RESUMO

Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL+ polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Trombopoetina/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Xenoenxertos , Humanos , Interferon Tipo I/metabolismo , Camundongos , Receptores de Trombopoetina/agonistas , Receptores de Trombopoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Dev Biol ; 424(1): 77-89, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28215940

RESUMO

The mammalian kidney collecting ducts are critical for water, electrolyte and acid-base homeostasis and develop as a branched network of tubular structures composed of principal cells intermingled with intercalated cells. The intermingled nature of the different collecting duct cell types has made it challenging to identify unique and critical factors that mark and/or regulate the development of the different collecting duct cell lineages. Here we report that the canonical Notch signaling pathway components, RBPJ and Presinilin1 and 2, are involved in patterning the mouse collecting duct cell fates by maintaining a balance between principal cell and intercalated cell fates. The relatively reduced number of principal cells in Notch-signaling-deficient kidneys offered a unique genetic leverage to identify critical principal cell-enriched factors by transcriptional profiling. Elf5, which codes for an ETS transcription factor, is one such gene that is down-regulated in kidneys with Notch-signaling-deficient collecting ducts. Additionally, Elf5 is among the earliest genes up regulated by ectopic expression of activated Notch1 in the developing collecting ducts. In the kidney, Elf5 is first expressed early within developing collecting ducts and remains on in mature principal cells. Lineage tracing of Elf5-expressing cells revealed that they are committed to the principal cell lineage by as early as E16.5. Over-expression of ETS Class IIa transcription factors, including Elf5, Elf3 and Ehf, increase the transcriptional activity of the proximal promoters of Aqp2 and Avpr2 in cultured ureteric duct cell lines. Conditional inactivation of Elf5 in the developing collecting ducts results in a small but significant reduction in the expression levels of Aqp2 and Avpr2 genes. We have identified Elf5 as an early maker of the principal cell lineage that contributes to the expression of principal cell specific genes.


Assuntos
Aquaporina 2/genética , Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/citologia , Rim/metabolismo , Receptores de Vasopressinas/genética , Fatores de Transcrição/metabolismo , Animais , Aquaporina 2/metabolismo , Contagem de Células , Linhagem Celular , Regulação para Baixo/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Integrases/metabolismo , Rim/embriologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/embriologia , Túbulos Renais Coletores/metabolismo , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Receptores Notch/metabolismo , Receptores de Vasopressinas/metabolismo , Transdução de Sinais , Regulação para Cima/genética , Ureter/embriologia , Ureter/metabolismo
10.
Mol Ther ; 25(8): 1757-1768, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28663103

RESUMO

The lytic immunological synapse (IS) is a discrete structural entity formed after the ligation of specific activating receptors that leads to the destruction of a cancerous cell. The formation of an effector cell IS in cytotoxic T lymphocytes or natural killer cells is a hierarchical and stepwise rearrangement of structural and signaling components and targeted release of the contents of lytic granules. While recent advances in the generation and testing of cytotoxic lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated their efficacy in the targeted lysis of tumor targets, the contribution and dynamics of IS components have not yet been extensively investigated in the context of engineered CAR cells. Understanding the biology of the CAR IS will be a powerful approach to efficiently guide the engineering of new CARs and help identify mechanistic problems in existing CARs. Here, we review the formation of the lytic IS and describe quantitative imaging-based measurements using multiple microscopy techniques at a single cell level that can be used in conjunction with established population-based assays to provide insight into the important cytotoxic function of CAR cells. The inclusion of this approach in the pipeline of CAR product design could be a novel and valuable innovation for the field.


Assuntos
Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Imagem Molecular , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Animais , Antígenos/química , Antígenos/imunologia , Antígenos/metabolismo , Biotecnologia , Citotoxicidade Imunológica , Humanos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Microscopia/métodos , Imagem Molecular/métodos , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética
11.
J Am Soc Nephrol ; 26(1): 149-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24904084

RESUMO

A disintegrin and metalloproteinase domain 10 (Adam10), a member of the ADAM family of cell membrane-anchored proteins, has been linked to the regulation of the Notch, EGF, E-cadherin, and other signaling pathways. However, it is unclear what role Adam10 has in the kidney in vivo. In this study, we showed that Adam10 deficiency in ureteric bud (UB) derivatives leads to a decrease in urinary concentrating ability, polyuria, and hydronephrosis in mice. Furthermore, Adam10 deficiency led to a reduction in the percentage of aquaporin 2 (Aqp2)(+) principal cells (PCs) in the collecting ducts that was accompanied by a proportional increase in the percentage of intercalated cells (ICs). This increase was more prominent in type A ICs than in type B ICs. Foxi1, a transcription factor important for the differentiation of ICs, was upregulated in the Adam10 mutants. The observed reduction of Notch activity in Adam10 mutant collecting duct epithelium and the similar reduction of PC/IC ratios in the collecting ducts in mice deficient for mindbomb E3 ubiquitin protein ligase 1, a key regulator of the Notch and Wnt/receptor-like tyrosine kinase signaling pathways, suggest that Adam10 regulates cell fate determination through the activation of Notch signaling, probably through the regulation of Foxi1 expression. However, phenotypic differences between the Adam10 mutants, the Mib1 mutants, and the Foxi1 mutants suggest that the functions of Adam10 in determining the fate of collecting duct cells are more complex than those of a simple upstream factor in a linear pathway involving Notch and Foxi1.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Rim/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM10 , Animais , Apoptose , Aquaporina 2/metabolismo , Caderinas/metabolismo , Proliferação de Células , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Hidronefrose/genética , Túbulos Renais/citologia , Túbulos Renais Coletores/metabolismo , Ligantes , Camundongos , Camundongos Transgênicos , Mutação , Poliúria/genética , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Regulação para Cima , Via de Sinalização Wnt
12.
PLoS Genet ; 8(11): e1003027, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23173005

RESUMO

Breast cancers that are "triple-negative" for the clinical markers ESR1, PGR, and HER2 typically belong to the Basal-like molecular subtype. Defective Rb, p53, and Brca1 pathways are each associated with triple-negative and Basal-like subtypes. Our mouse genetic studies demonstrate that the combined inactivation of Rb and p53 pathways is sufficient to suppress the physiological cell death of mammary involution. Furthermore, concomitant inactivation of all three pathways in mammary epithelium has an additive effect on tumor latency and predisposes highly penetrant, metastatic adenocarcinomas. The tumors are poorly differentiated and have histologic features that are common among human Brca1-mutated tumors, including heterogeneous morphology, metaplasia, and necrosis. Gene expression analyses demonstrate that the tumors share attributes of both Basal-like and Claudin-low signatures, two molecular subtypes encompassed by the broader, triple-negative class defined by clinical markers.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Proteína do Retinoblastoma , Proteína Supressora de Tumor p53 , Animais , Apoptose , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Evolução Molecular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Redes e Vias Metabólicas , Camundongos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
J Neurooncol ; 119(1): 27-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24792645

RESUMO

Separase, an enzyme that cleaves the chromosomal cohesin during mitosis, is overexpressed in a wide range of human epithelial cancers of breast, bone and prostate (Meyer et al., Clin Cancer Res 15(8):2703-2710, 2009). Overexpression of Separase in animal models results in aneuploidy and tumorigenesis. We have examined the expression and localization of Separase protein in adult and pediatric glioblastoma and normal brain specimens. Immunofluorescence microscopy and Western blot analysis showed significant overexpression of Separase in all adult and a subset of pediatric glioblastoma cells. Tumor status and patient survival strongly correlate with the mislocalization of Separase into the nucleus throughout all stages of the cell cycle. Unlike exclusively nuclear localization in mitotic control cells, glioblastoma samples have a significantly higher number of resting (interphase) cells with strong nuclear Separase staining. Additionally, patient survival analysis demonstrated a strong correlation between overexpression of Separase protein in adult glioblastoma and a high incidence of relapse and reduced overall survival. These results further strengthen our hypothesis that Separase is an oncogene whose overexpression induces tumorigenesis, and indicate that Separase overexpression and aberrant nuclear localization are common in many tumor types and may predict outcome in some human malignancies.


Assuntos
Neoplasias Encefálicas/metabolismo , Núcleo Celular/metabolismo , Glioblastoma/metabolismo , Separase/metabolismo , Regulação para Cima , Neoplasias Encefálicas/mortalidade , Ciclo Celular , Glioblastoma/mortalidade , Humanos , Prognóstico , Recidiva , Taxa de Sobrevida
14.
Mol Ther ; 21(11): 2087-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23939024

RESUMO

Preclinical and early clinical studies have demonstrated that chimeric antigen receptor (CAR)-redirected T cells are highly promising in cancer therapy. We observed that targeting HER2 in a glioblastoma (GBM) cell line results in the emergence of HER2-null tumor cells that maintain the expression of nontargeted tumor-associated antigens. Combinational targeting of these tumor-associated antigens could therefore offset this escape mechanism. We studied the single-cell coexpression patterns of HER2, IL-13Rα2, and EphA2 in primary GBM samples using multicolor flow cytometry and immunofluorescence, and applied a binomial routine to the permutations of antigen expression and the related odds of complete tumor elimination. This mathematical model demonstrated that cotargeting HER2 and IL-13Rα2 could maximally expand the therapeutic reach of the T cell product in all primary tumors studied. Targeting a third antigen did not predict an added advantage in the tumor cohort studied. We therefore generated bispecific T cell products from healthy donors and from GBM patients by pooling T cells individually expressing HER2 and IL-13Rα2-specific CARs and by making individual T cells to coexpress both molecules. Both HER2/IL-13Rα2-bispecific T cell products offset antigen escape, producing enhanced effector activity in vitro immunoassays (against autologous glioma cells in the case of GBM patient products) and in an orthotopic xenogeneic murine model. Further, T cells coexpressing HER2 and IL-13Rα2-CARs exhibited accentuated yet antigen-dependent downstream signaling and a particularly enhanced antitumor activity.


Assuntos
Transferência Adotiva , Antígenos de Neoplasias/metabolismo , Glioblastoma/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/imunologia , Glioblastoma/patologia , Células HEK293 , Humanos , Subunidade alfa2 de Receptor de Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Camundongos , Camundongos SCID , Modelos Biológicos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Células Tumorais Cultivadas , Evasão Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
15.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645025

RESUMO

The plasticity and diversity of cell types with specialized functions likely defines the capacity of multicellular organisms to adapt to physiologic stressors. The kidney collecting ducts contribute to water, electrolyte, and pH homeostasis and are composed of mature intermingled epithelial cell types that are susceptible to transdifferentiate. The conversion of kidney collecting duct principal cells to intercalated cells is actively inhibited by Notch signaling to ensure urine concentrating capability. Here we identify Hes1, a target of Notch signaling, allows for maintenance of functionally distinct epithelial cell types within the same microenvironment by regulating mechanistic target of rapamycin complex 1 (mTORC1) activity. Hes1 directly represses the expression of insulin receptor substrate 1 ( Irs1 ), an upstream component of mTOR pathway and suppresses mTORC1 activity in principal cells. Genetic inactivation of tuberous sclerosis complex 2 ( Tsc2 ) to increase mTORC1 activity in mature principal cells is sufficient to promote acquisition of intercalated cell properties, while inhibition of mTORC1 in adult kidney epithelia suppresses intercalated cell properties. Considering that mTORC1 integrates environmental cues, the linkage of functionally distinct epithelial cell types to mTORC1 activity levels likely allows for cell plasticity to be regulated by physiologic and metabolic signals and the ability to sense/transduce these signals.

16.
Physiol Genomics ; 45(11): 422-33, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23572539

RESUMO

Within the anterior pituitary gland, glucocorticoids such as corticosterone (CORT) provide negative feedback to inhibit adrenocorticotropic hormone secretion and act to regulate production of other hormones including growth hormone (GH). The ontogeny of GH production during chicken embryonic and rat fetal development is controlled by glucocorticoids. The present study was conducted to characterize effects of glucocorticoids on gene expression within embryonic pituitary cells and to identify genes that are rapidly and directly regulated by glucocorticoids. Chicken embryonic pituitary cells were cultured with CORT for 1.5, 3, 6, 12, and 24 h in the absence and presence of cycloheximide (CHX) to inhibit protein synthesis. RNA was analyzed with custom microarrays containing 14,053 chicken cDNAs, and results for selected genes were confirmed by quantitative reverse transcription real-time PCR (qRT-PCR). Levels of GH mRNA were maximally induced by 6 h of CORT treatment, and this response was blocked by CHX. Expression of 396 genes was affected by CORT, and of these, mRNA levels for 46 genes were induced or repressed within 6 h. Pathway analysis of genes regulated by CORT in the absence of CHX revealed networks of genes associated with endocrine system development and cellular development. Eleven genes that were induced within 6 h in the absence and presence of CHX were identified, and eight were confirmed by qRT-PCR. The expression profiles and canonical pathways defined in this study will be useful for future analyses of glucocorticoid action and regulation of pituitary function.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glucocorticoides/farmacologia , Adeno-Hipófise/efeitos dos fármacos , Animais , Células Cultivadas , Embrião de Galinha , Corticosterona/farmacologia , Cicloeximida/farmacologia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Adeno-Hipófise/metabolismo , RNA Mensageiro/metabolismo
17.
Vaccines (Basel) ; 11(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515040

RESUMO

Messenger RNA (mRNA) vaccines have emerged as a flexible platform for vaccine development. The evolution of lipid nanoparticles as effective delivery vehicles for modified mRNA encoding vaccine antigens was demonstrated by the response to the COVID-19 pandemic. The ability to rapidly develop effective SARS-CoV-2 vaccines from the spike protein genome, and to then manufacture multibillions of doses per year was an extraordinary achievement and a vaccine milestone. Further development and application of this platform for additional pathogens is clearly of interest. This comes with the associated need for new analytical tools that can accurately predict the performance of these mRNA vaccine candidates and tie them to an immune response expected in humans. Described here is the development and characterization of an imaging based in vitro assay able to quantitate transgene protein expression efficiency, with utility to measure lipid nanoparticles (LNP)-encapsulated mRNA vaccine potency, efficacy, and stability. Multiple biologically relevant adherent cell lines were screened to identify a suitable cell substrate capable of providing a wide dose-response curve and dynamic range. Biologically relevant assay attributes were examined and optimized, including cell monolayer morphology, antigen expression kinetics, and assay sensitivity to LNP properties, such as polyethylene glycol-lipid (or PEG-lipid) composition, mRNA mass, and LNP size. Collectively, this study presents a strategy to quickly optimize and develop a robust cell-based potency assay for the development of future mRNA-based vaccines.

18.
Dis Model Mech ; 15(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524414

RESUMO

Owing to the need for de novo cholesterol synthesis and cholesterol-enriched structures within the nervous system, cholesterol homeostasis is critical to neurodevelopment. Diseases caused by genetic disruption of cholesterol biosynthesis, such as Smith-Lemli-Opitz syndrome, which is caused by mutations in 7-dehydrocholesterol reductase (DHCR7), frequently result in broad neurological deficits. Although astrocytes regulate multiple neural processes ranging from cell migration to network-level communication, immunological activation of astrocytes is a hallmark pathology in many diseases. However, the impact of DHCR7 on astrocyte function and immune activation remains unknown. We demonstrate that astrocytes from Dhcr7 mutant mice display hallmark signs of reactivity, including increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Transcript analyses demonstrate extensive Dhcr7 astrocyte immune activation, hyper-responsiveness to glutamate stimulation and altered calcium flux. We further determine that the impacts of Dhcr7 are not astrocyte intrinsic but result from non-cell-autonomous effects of microglia. Our data suggest that astrocyte-microglia crosstalk likely contributes to the neurological phenotypes observed in disorders of cholesterol biosynthesis. Additionally, these data further elucidate a role for cholesterol metabolism within the astrocyte-microglia immune axis, with possible implications in other neurological diseases.


Assuntos
Síndrome de Smith-Lemli-Opitz , Animais , Camundongos , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/patologia , Esteróis , Microglia/patologia , Colesterol , Fenótipo
19.
Sci Rep ; 12(1): 15494, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109543

RESUMO

In the development of end-to-end large-scale live virus vaccine (LVV) manufacturing, process analytical technology (PAT) tools enable timely monitoring of critical process parameters (CPP) and significantly guide process development and characterization. In a commercial setting, these very same tools can enable real time monitoring of CPPs on the shop floor and inform harvest decisions, predict peak potency, and serve as surrogates for release potency assays. Here we introduce the development of four advanced PAT tools for upstream and downstream process monitoring in LVV manufacturing. The first tool explores the application of capacitance probes for real time monitoring of viable cell density in bioreactors. The second tool utilizes high content imaging to determine optimum time of infection in a microcarrier process. The third tool uses flow virometry (or nanoscale flow cytometry) to monitor total virus particle counts across upstream and downstream process steps and establishes a robust correlation to virus potency. The fourth and final tool explores the use of nucleic acid dye staining to discriminate between "good" and "damaged" virus particles and uses this strategy to also monitor virus aggregates generated sometimes during downstream processing. Collectively, these tools provide a comprehensive monitoring toolbox and represent a significantly enhanced control strategy for the manufacturing of LVVs.


Assuntos
Ácidos Nucleicos , Vacinas , Reatores Biológicos
20.
Vaccines (Basel) ; 10(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36298454

RESUMO

Vaccinations to prevent infectious diseases are given to target the body's innate and adaptive immune systems. In most cases, the potency of a live virus vaccine (LVV) is the most critical measurement of efficacy, though in some cases the quantity of surface antigen on the virus is an equally critical quality attribute. Existing methods to measure the potency of viruses include plaque and TCID50 assays, both of which have very long lead times and cannot provide real time information on the quality of the vaccine during large-scale manufacturing. Here, we report the evaluation of LumaCyte's Radiance Laser Force Cytology platform as a new way to measure the potency of LVVs in upstream biomanufacturing process in real time and compare this to traditional TCID50 potency. We also assess this new platform as a way to detect adventitious agents, which is a regulatory expectation for the release of commercial vaccines. In both applications, we report the ability to obtain expedited and relevant potency information with strong correlation to release potency methods. Together, our data propose the application of Laser Force Cytology as a valuable process analytical technology (PAT) for the timely measurement of critical quality attributes of LVVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA