Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Langmuir ; 39(27): 9526-9537, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37381895

RESUMO

We report morphological evolution and pattern formation during evaporative drying of a droplet of polymethylmethacrylate (PMMA) dissolved in tetrahydrofuran over a soft, swellable cross-linked Sylgard 184 substrate. In contrast to the well-known coffee ring formation due to the evaporation of a polymer solution droplet over a rigid substrate, we show that the situation becomes far more complicated over a Sylgard 184 substrate due to solvent penetration and associated swelling. The combined effect of evaporation and diffusive penetration leads to significantly faster solvent loss and results in the formation of an in situ thin polymer shell over the free surface of the evaporating droplet due to the attainment of local glass-transition concentration. The diffusive penetration of the solvent also leads to the spreading of the three-phase contact line (TPCL) of the droplet after dispensing. The vertical component of surface tension acting at the TPCL results in the formation of peripheral creases along the boundary of the droplet after the TPCL pins. With the progressive solvent loss, the shell eventually collapses, resulting in a buckled morphology with a central depression. We show that the evolution pathway and the final deposit morphology depend strongly on the initial PMMA concentration (Ci) in the droplet as it undergoes a transformation from a central depression surrounded by peripheral folds at lower Ci to a central depression along with radial wrinkles at higher Ci. During the late stage of the evolution process, the substrate undergoes de-swelling, which leads to flattening/rearrangement of the radial wrinkles, the extent of which again depends on Ci. We explored how the deposition pathway and patterns vary over a topographically patterned substrate and found out that the presence of topographic patterns leads to even faster solvent consumption due to enhanced diffusive penetration at the corrugated liquid─substrate interface, eventually resulting in deposition with a smaller footprint and partially aligned radial wrinkles. The results significantly enhance our understanding of droplet evaporation over a substrate into which the solvent can penetrate and unravel the complex physics, which is significantly dominated by swelling rather than evaporation only, which is common over a rigid, non-interacting substrate.

2.
Langmuir ; 39(36): 12826-12834, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642554

RESUMO

A liquid drop impacting on a soft surface is known to exhibit fascinating dynamics that is distinctive from its bounce-back atop a rigid surface. However, while the early spreading of the drop subsequent to its immediate impact with a lubricating liquid layer appears to be reasonably well understood, the later events of retraction and eventual stabilization appear to be poorly addressed. Here, we bring out the nontrivial confluence of the solid substrate wettability and the liquid layer viscosity toward modulating the post-collision dynamics of an impinging liquid drop on a viscous oil-infused surface during its later phase of settlement before arriving at an equilibrium state. Our results reveal that despite an intuitive analogy with the classical phenomenon of damped oscillation, the drop, during its later stages of motion, undergoes dynamical events that may be nontrivially dictated by not only the relative viscosity of the impacting drop and the liquid layer but also the intrinsic wettability of the solid substrate, governing its post-impact settlement via a sequel of spreading-retraction cycles. As a consequence, the viscous liquid layer, instead of providing additional damping, may nonintuitively reduce the effective viscous dissipation so as to hasten the drop's final settlement. These results may turn out to be critical in designing engineered surfaces for tuning the movement of drops in a preferential pathway, bearing decisive implications in the functionalities of liquid lenses, inkjet printing, spray coating and cooling, and several other emerging applications in the realm of lubricated fluidic interfaces.

3.
Langmuir ; 39(17): 6051-6060, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37067511

RESUMO

Rose petals exhibit a phenomenal wetting property of being sticky and superhydrophobic simultaneously. A recent study has shown that for short timescales, associated with drop impact phenomenon, lotus leaf and rose petal replicas exhibit similar wettability, thereby highlighting the difference between long and short time wettability. Also, short time wetting on rose petals of different colors remains completely unaddressed, as almost all existing study on wetting of rose petals have been performed with the classical red rose (Rosa chinensis). In this paper, we compare the drop impact studies on replicas of a yellow rose petal, with those on extensively studied red rose petal replicas and the lotus leaf over a wide range of Weber number (We), by varying the height of fall (h) from 10 to 375 mm. Our results reveal that over the replica of a yellow rose petal, the initial impact outcome varies from complete rebound to micro pinning and eventually complete pinning depending on the kinetic energy of the impacting drop, in contrast to that on red rose petal replica on which the droplet always pinned. Based on experimental finding, we present a comprehensive regime phase map of the post impact behavior of the drop on different surfaces as a function of impact height. We also present a simple scaling analysis to understand the combined effect of pattern height and periodicity on the critical h corresponding to wetting regime transition. Additionally, variation of maximum spreading diameter and spreading time with the h for the different surfaces is also discussed. The results highlight that the initial impact dynamics of a water drop over a topographically patterned substrate is a strong function of the topographical parameters and can be very different from the equilibrium wetting state.

4.
Soft Matter ; 19(26): 4899-4908, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37338277

RESUMO

Non-close packed (NCP) colloidal arrays find wide applications in the fields of photonics, optical chip fabrication, nano sphere lithography and so on. However, unlike their close packed counterparts, such arrays cannot be obtained by direct self-organization of colloidal particles and require specialized techniques involving plasma/reactive ion etching, electric field driven assembly, substrate stretching or precise positioning of the particles. In this article, we present a facile template guided approach for fabricating ordered NCP arrays of colloidal particles. First, we employ soft lithography to replicate self-assembled hexagonal close packed (HCP) arrays of 'larger colloidal particles' (LPs) to obtain a topographically patterned positive and/or negative replica of the initial array. These replicas are then used as templates to spin coat 'smaller colloidal particles' (SPs), which may even have some degree of poly-dispersity, to obtain ordered NCP arrays. We further show that pattern morphology can be modulated based on whether a single or a double replicated template is used to confine the SPs, the concentration (Cn) of the SPs in the casting solution as well as the relative commensuration of the diameter of the SPs (ds) with that of the LPs (dL). Finally, we show that such NCP arrays can be transferred onto any flat surface by UVO mediated colloidal transfer printing.

5.
Nanotechnology ; 35(1)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37725943

RESUMO

Nitrogen-doped carbon dots (NCDs), exhibiting strong yellow emission in aqueous solution and solid matrices, have been utilized for fabricating heterostructure white electroluminescence devices. These devices consist of nitrogen-doped carbon dots as an emissive layer sandwiched between an organic hole transport layer (PEDOT:PSS) and an array of rutile TiO2nanorods, acting as an electron transport layer. Under an applied forward bias of 5 V, the device exhibits broadband electroluminescence covering the wavelength range of 390-900 nm, resulting in pure white light emission characteristics at room temperature. The result demonstrates the successful fabrication of all solution-processed, low-cost, eco-friendly NCDs-based LEDs with CIE (Commission Internationale d'Éclairage) coordinate of (0.31, 0.34) and color rendering index (CRI) > 90, which are close to ideal white light emission characteristics. The device functionalities are achieved based on defect-related NIR emission from TiO2nanorods array and visible emission from nitrogen-doped carbon dots. This result paves a new opportunity to develop low-cost, solution-processed nitrogen-doped carbon dots based on warm White light emitting diodes with high CRI for large-area display and lighting applications.

6.
Langmuir ; 37(46): 13627-13636, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752110

RESUMO

Liquid-infused slippery surfaces have replaced structural superhydrophobic surfaces in a plethora of emerging applications, hallmarked by their favorable self-healing and liquid-repelling characteristics. Their ease of fabrication on different types of materials and increasing demand in various industrial applications have triggered research interests targeted toward developing an environmental-friendly, flexible, and frugal substrate as the underlying structural and functional backbone. Although many expensive polymers such as polytetrafluoroethylene have so far been used for their fabrication, these are constrained by their compromised flexibility and non-ecofriendliness due to the use of fluorine. Here, we explore the development and deployment of a biodegradable, recyclable, flexible, and an economically viable material in the form of a paper matrix for fabricating liquid-infused slippery interfaces for prolonged usage. We show by controlled experiments that a simple silanization followed by an oil infusion protocol imparts an inherent slipperiness (low contact angle hysteresis and low tilting angle for sliding) to the droplet motion on the paper substrate and provides favorable anti-icing characteristics, albeit keeping the paper microstructures unaltered. This ensures concomitant hydrophobicity, water adhesion, and capillarity for low surface tension fluids, such as mustard oil, with an implicit role played by the paper pore size distribution toward retaining a stable layer of the infused oil. With demonstrated supreme anti-icing characteristics, these results open up new possibilities of realizing high-throughput paper-based substrates for a wide variety of applications ranging from biomedical unit operations to droplet-based digital microfluidics.

7.
Soft Matter ; 17(6): 1487-1496, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33459336

RESUMO

Strategic control of evaporation dynamics can help control oscillation modes and internal flow field in an oscillating sessile droplet. This article presents the study of an oscillating droplet on a bio-inspired "sticky" surface to better understand the nexus between the modes of evaporation and oscillation. Oscillation in droplets can be characterized by the number of nodes forming on the surface and is referred to as the mode of oscillation. An evaporating sessile droplet under constant periodic perturbation naturally self-tunes between different oscillation modes depending on its geometry. The droplet geometry evolves according to the mode of evaporation controlled by substrate topography. We use a bio-inspired, rose patterned, "sticky" hydrophobic substrate to perpetually pin the contact line of the droplet in order to hence achieve a single mode of evaporation for most of the droplet's lifetime. This allows the prediction of experimentally observed oscillation mode transitions at different excitation frequencies. We present simple scaling arguments to predict the velocity of the internal flow induced by the oscillation. The findings are beneficial to applications which seek to tailor energy and mass transfer rates across liquid droplets by using bio-inspired surfaces.

8.
Langmuir ; 36(15): 4135-4143, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32216354

RESUMO

Slippery surfaces, inspired by the functionality of trapping interfaces of specialized leaves of pitcher plants, have been widely used in self-cleaning, anti-icing, antifrost, and self-healing surfaces. They can be fabricated on metallic surfaces as well, presenting a more durable and low-maintenance anticorrosive surface on metals. However, the lack of studies on the durability of these slippery surfaces at high temperature prohibits their practical deployment in real industrial applications where thermal effects are critical and high temperature conditions are inevitable. We present here a unique fabrication technique of a copper-based oleoplaned slippery surface that has been tested for high temperature durability under repeated thermal cycles. Their slipperiness at high temperatures has also been tested in the absence of the Leidenfrost effect. Our findings suggest that these new substrates can be used for fabricating low maintenance surfaces for high temperature applications or even where the surface undergoes repeated thermal cycles like heat exchanger pipes, utensils, engine casings, and outdoor metallic structures.

9.
Langmuir ; 36(50): 15270-15282, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33296208

RESUMO

The influence of adding nanoparticles on the ascast morphology of spin coated immiscible polystyrene/poly(methyl methacrylate) (PS/PMMA) thin films of different thickness (hE) and composition (RB, volume ratio of PS to PMMA) has been explored in this article. To understand the precise effect of nanoparticle addition, the morphology of PS/PMMA thin blend films spin cast from toluene on a native oxide covered silicon wafer substrate was first investigated. It is seen that in particle free films, the generic morphology of the films remains nearly unaltered with increase in hE, for RB = 3:1 and 1:3. In contrast, strong hE dependent morphology transformation is observed in films with RB = 1:1. Subsequently, thiol-capped gold nanoparticles (AuNP) containing films with different particle concentrations (CNP) were cast from the same solvent along with the polymer mixture. We observe that addition of AuNPs barely alters the generic morphology of the films with RB = 3:1. In contrast, the presence of the particles significantly influences the morphology of the films with RB = 1:1 and 1:3, particularly at higher CNP (≈10.0%). X-ray photoelectron spectroscopy and X-ray reflectivity of some samples reveal that the AuNPs tend to migrate to the free surface through the PS phase, thereby stabilizing this layer partially or fully (depending on CNP) against dewetting over a surface of adsorbed PMMA layer and influencing the ascast morphology as a function of CNP. The work is fundamentally important in understanding largely overlooked implications of nanoparticle addition on the morphology of PS/PMMA blend thin films which forms the fundamental basis for future interesting studies involving dynamics of nanoparticles within the blend thin films.

10.
Soft Matter ; 16(24): 5777-5786, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32531014

RESUMO

Axial gradients in wall elasticity may have significant implications in the deformation and flow characteristics of a narrow fluidic conduit, bearing far-reaching consequences in physiology and bio-engineering. Here, we present a theoretical and experimental framework for fluid-structure interactions in microfluidic channels with axial gradients in wall elasticity, in an effort to arrive at a potential conceptual foundation for in vitro study of mirovascular physiology. Towards this, we bring out the static deformation and steady flow characteristics of a circular microchannel made of polydimethylsiloxane (PDMS) bulk, considering imposed gradients in the substrate elasticity. In particular, we study two kinds of elasticity variations - a uniformly soft (or hard) channel with a central strip that is hard (or soft), and, increasing elasticity along the length of the channel. The former kind yields a centrally constricted (or expanded) deformed profile in response to the flow. The latter kind leads to increasingly bulged channel radius from inlet to outlet in response to flow. We also formulate an analytical model capturing the essential physics of the underlying elastohydrodynamic interactions. The theoretical predictions match favourably with the experimental observations and are also in line with reported results on stenosis in mice. The present framework, thus, holds the potential for acting as a fundamental design basis towards developing in vitro models for micro-circulation, capable of capturing exclusive artefacts of healthy and diseased conditions.


Assuntos
Elasticidade , Microfluídica , Modelos Biológicos , Fenômenos Biofísicos , Dimetilpolisiloxanos , Microcirculação
11.
Soft Matter ; 15(18): 3828-3834, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993267

RESUMO

Reversible morphology switching in a soft elastic film sandwiched between two parallel electrodes when subject to an externally applied electric field is reported herein. In contrast to electric field mediated instability of a thin liquid film, where the instability patterns remain permanent, in the present case the patterns debond completely or partially when the electric field is switched off, depending on whether the gap spacing (dG) between the film and the top electrode is >100 nm or not. The onset of instability is marked with the appearance of isotropic columns when the applied field strength (U) exceeds a critical value (Uc). The subsequent increase in U leads to the gradual transition of the instability patterns from pillars to bi-continuous labyrinths to an array of holes. Complete conformal contact is established between the film and the top electrode at U = UF. When U is reduced, the morphology changes in a reverse sequence. There is a significant level of hysteresis between the bonding and debonding stages, including persistence of the features at much lower voltages due to pinning of the patterns to the top electrode. Complete detachment occurs at a lower voltage UD when dG > 100 nm. The holes fluctuate before complete contact between the film and the top electrode due to competition between the destabilizing electric field and restoring forces due to stretching of the crosslinked polymer matrix.

12.
Soft Matter ; 15(44): 9031-9040, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31637378

RESUMO

Simultaneous tuning of wettability and adhesion of a surface requires intricate procedures for altering the interfacial structures. Here, we present a simple method for preparing a stable slippery surface, with an intrinsic capability of varying its adhesion characteristics. Cross-linked PDMS, an inherent hydrophobic material commonly used for microfluidic applications, is used to replicate the structures on the surface of a rose petal which acts as a high adhesion solid base and is subsequently oleoplaned with silicone oil. Our results demonstrate that the complex hierarchical rose petal structures can arrest dewetting of the silicone oil on the cross linked PDMS base by anchoring the oil film strongly even under flow. Further, by tuning the extent of submergence of the rose petal structures with silicone oil, we could alter the adhesion characteristics of the surface on demand, while retaining its slippery characteristics for a wide range of the pertinent parameters. We have also demonstrated the possible fabrication of gradient adhesion surfaces. This, in turn, may find a wide variety of applications in water harvesting, droplet maneuverability and no-loss transportation in resource-limited settings.

13.
Langmuir ; 34(27): 8024-8030, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29905487

RESUMO

Several interfacial phenomena are active during polymeric foaming, the dynamics of which significantly influence terminal stability, cell structure, and in turn the thermomechanical properties of temporally evolved foam. Understanding these dynamics is important in achieving desired foam properties. Here, we introduce a method to simultaneously portray the time evolution of bubble growth, lamella thinning, and plateau border drainage, occurring during reactive polymeric foaming. In this method, we initially conduct bulk and surface shear rheology under polymerizing and nonfoaming conditions. In a subsequent step, foaming experiments were conducted in a rheometer. The microscopic structural dimensions pertaining to the terminal values of the dynamics of each interfacial phenomena are then measured using a combination of scanning electron microscopy, optical microscopy, and imaging ellipsometry, after the foaming is over. The measured surface and bulk rheological parameters are incorporated in time evolution equations that are derived from mass and momentum transport occurring when a model viscoelastic fluid is foamed by gas dispersion. Analytical and numerical solutions to these equations portray the dynamics. We demonstrate this method for a series of reactive polyurethane foams generated from different chemical sources. The effectiveness of our method is in simultaneously obtaining these dynamics that are difficult to directly monitor because of short active durations over multiple length scales.

14.
Soft Matter ; 14(38): 7883-7893, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30229795

RESUMO

We report the evaporative drying of an aqueous droplet containing a dilute solution of sodium chloride (NaCl) on a hydrophobic substrate made of cross-linked poly-dimethyl siloxane (PDMS). The salt concentration Cn was varied between 0.08 molar (M) and 2.0 M. The contact line of the evaporating droplets shows significant initial retraction for all Cn, before they get pinned. While the final morphology comprises a few small NaCl crystals deposited around the pinned contact line, in droplets with a low Cn (<0.5 M), it transforms to a single large salt crystal when Cn > 0.7 M with no peripheral deposition. We further show that the deposition morphology drastically changes when an anionic surfactant, sodium dodecyl sulfate (SDS), is added into the salt-solutions. Even in the surfactant-laden droplets, the final deposition morphology changes significantly as a function of Cn. It transforms from a thick SDS ring surrounding a fractal-like deposit of NaCl crystallites at lower Cn to a peripheral deposit of NaCl crystals at higher Cn due to competition between micelle formation and crystallization. However, the crystallographic orientation of the deposited NaCl crystals remains unaltered irrespective of the presence of surfactant.

15.
Soft Matter ; 14(34): 7034-7044, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30109884

RESUMO

A facile methodology to create a wrinkled surface with a tailored topography is presented herein. The dependency of the elasticity of poly(dimethyl)siloxane (PDMS) on the curing temperature has been exploited to obtain a substrate with an elasticity gradient. The temperature gradient across the length of PDMS is created by a novel set-up consisting of a metal and insulator connected to a heater and the highest usable (no degradation of PDMS) temperature gradient is used. The time-dependent temperature distributions along the substrate are measured and the underlying physics of the dependence of the PDMS elasticity on the curing temperature is addressed. The PDMS substrate with the elasticity gradient is first stretched and subsequently oxidized by oxygen plasma. Upon relaxation, an ordered wrinkled surface with continuously varying wavelength and amplitude along the length of PDMS is obtained. The extent of hydrophobicity recovery of this plasma oxidized PDMS with varying elasticity has been studied. The change in the wavelength and amplitude of the regular patterns on the substrate can be controlled by varying operational parameters like applied pre-strain, plasma power and the heater temperature. It has been found that the spatial distributions of the topography and the hydrophobicity collectively decide the resultant wettability of the substrate. Such surfaces with gradients in the substructure dimensions demonstrate different wetting characteristics that may lead to a wide gamut of applications including droplet movement, cell adhesion and proliferation, diffraction grating etc.

16.
Nanotechnology ; 29(50): 505301, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30226471

RESUMO

Nanopatterning of the active layer with feature size comparable to the wavelength of visible light is a popular strategy for improving the performance of optoelectronic devices, as these structures enhance the optical path length by light trapping due to combined contribution of multiple scattering, diffraction, and antireflection. Here, we report the fabrication of ZnO/CdS self-biased heterojunction photodetectors on soft lithographically patterned PEDOT:PSS layers with grating geometry. The present study combines the robustness of inorganic devices along with the convenience of easy patterning capability of an organic PEDOT:PSS layer. Patterns with two different line widths (L P = 350 nm, and Lp = 750 nm) have been used in this study to understand the influence of feature dimension on the device performance. We observe enhanced photoluminescence on patterned devices, in comparison to devices fabricated on flat PEDOT:PSS films, which is attributed to the increased interfacial area between the organic and inorganic layers. The spectral response [R( λ )] and specific detectivity [D * ( λ )] are found to be higher for the devices with Lp = 350 nm as compared to other devices due to enhanced absorption within the structures due to confinement of light, which also results in reduced reflectance in devices with Lp = 350 nm.

17.
J Am Chem Soc ; 139(37): 13083-13091, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28876060

RESUMO

Exponential interest in the field of covalent organic frameworks (COFs) stems from the direct correlation between their modular design principle and various interesting properties. However, existing synthetic approaches to realize this goal mainly result in insoluble and unprocessable powders, which severely restrict their widespread applicability. Therefore, developing a methodology for easy fabrication of these materials remains an alluring goal and a much desired objective. Herein, we have demonstrated a bottom-up interfacial crystallization strategy to fabricate these microcrystalline powders as large-scale thin films under ambient conditions. This unique design principle exploits liquid-liquid interface as a platform, allowing simultaneous control over crystallization and morphology of the framework structure. The thin films are grown without any support in free-standing form and can be transferred onto any desirable substrate. The porous (with Tp-Bpy showing highest SBET of 1 151 m2 g-1) and crystalline thin films, having high chemical as well as thermal stability, also hold the merit to tune the thickness as low as sub-100 nm. These nanostructured thin COF films demonstrate remarkable solvent-permeance and solute-rejection performance. A prominent instance is the Tp-Bpy thin film, which displays an unprecedented acetonitrile permeance of 339 L m-2 h-1 bar-1.

18.
Chemistry ; 23(30): 7361-7366, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28375582

RESUMO

Few-layers thick metal-organic nanosheets have been synthesized using water-assisted solid-state transformation through a combined top-down and bottom-up approach. The metal-organic polyhedra (MOPs) convert into metal-organic frameworks (MOFs) which subsequently self-exfoliate into few-layered metal-organic nanosheets. These MOP crystals experience a hydrophobicity gradient with the inner surface during contact with water because of the existence of hydrophobic spikes on their outer surface. When the amount of water available for interaction is higher, the resultant layers are not stacked to form bulk materials; instead few-layered nanosheets with high uniformity were obtained in high yield. The phenomenon has resulted high yield production of uniformly distributed layered metal-organic nanosheets from three different MOPs, showing its general adaptability.

19.
Soft Matter ; 13(27): 4709-4719, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28613314

RESUMO

Substrate pattern guided self-organization of ultrathin and confined polymeric films on a topographically patterned substrate is a useful approach for obtaining ordered meso and nano structures over large areas, particularly if the ordering is achieved during film preparation itself, eliminating any post-processing such as thermal or solvent vapor annealing. By casting a dilute solution of two immiscible polymers, polystyrene (PS) and polymethylmethacrylate (PMMA), from a common solvent (toluene) on a topographically patterned substrate with a grating geometry, we show the formation of self-organized meso patterns with various degrees of ordering. The morphology depends on both the concentration of the dispensed solution (Cn) and the blend composition (RB). Depending on the extent of dewetting during spin coating, the final morphologies can be classified into three distinct categories. At a very low Cn the solution dewets fully, resulting in isolated polymer droplets aligned along substrate grooves (Type 1). Type 2 structures comprising isolated threads with aligned phase separated domains along each substrate groove are observed at intermediate Cn. A continuous film (Type 3) is obtained above a critical concentration (Cn*) that depends on RB. While the extent of ordering of the domains gradually diminishes with an increase in film thickness for Type 3 patterns, the size of the domains remains much smaller than that on a flat substrate, resulting in significant downsizing of the features due to the lateral confinement imposed on the phase separation process by the topographic patterns. Finally, we show that some of these structures exhibit excellent broadband anti-reflection (AR) properties.

20.
Angew Chem Int Ed Engl ; 55(50): 15604-15608, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27862737

RESUMO

Covalent organic nanosheets (CONs) are a new class of porous thin two-dimensional (2D) nanostructures that can be easily designed and functionalized and could be useful for separation applications. Poor dispersion, layer restacking, and difficult postsynthetic modifications are the major hurdles that need to be overcome to fabricate scalable CON thin films. Herein, we present a unique approach for the chemical exfoliation of an anthracene-based covalent organic framework (COF) to N-hexylmaleimide-functionalized CONs, to yield centimeter-sized free-standing thin films through layer-by-layer CON assembly at the air-water interface. The thin-layer fabrication technique presented here is simple, scalable, and does not require any surfactants or stabilizing agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA