Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 74: 633-654, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32689916

RESUMO

Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.


Assuntos
Cromatóforos Bacterianos/metabolismo , Cianobactérias/metabolismo , Fotossíntese/fisiologia , Tilacoides/metabolismo , Cianobactérias/química , Cianobactérias/genética , Transporte de Elétrons , Microscopia/classificação , Microscopia/métodos , Fotossíntese/genética , Tilacoides/química
2.
J Bacteriol ; 205(10): e0020923, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37787518

RESUMO

Cyanobacteria show an unusually complex prokaryotic cell structure including a distinct intracytoplasmic membrane system, the thylakoid membranes that are the site of the photosynthetic light reactions. The thylakoid and plasma membranes have sharply distinct proteomes, but the mechanisms that target proteins to a specific membrane remain poorly understood. Here, we investigate the locations of translation of thylakoid and plasma membrane proteins in the model unicellular cyanobacterium Synechococcus elongatus PCC 7942. We use fluorescent in situ hybridization to probe the locations of mRNAs encoding membrane-integral proteins, plus Green Fluorescent Protein tagging of the RplL subunit to reveal the location of ribosomes under different conditions. We show that membrane-integral thylakoid and plasma membrane proteins are translated in different locations. Thylakoid membrane proteins are translated in patches at the innermost thylakoid membrane surface facing the nucleoid. However, different proteins are translated in different patches, even when they are subunits of the same multiprotein complex. This implies that translation is distributed over the proximal thylakoid surface, with newly inserted proteins migrating within the membrane prior to incorporation into complexes. mRNAs encoding plasma membrane proteins form patches at the plasma membrane. Ribosomes can be observed at similar locations near the thylakoid and plasma membranes, with more ribosomes near the plasma membrane when conditions force rapid production of plasma membrane proteins. There must be routes for ribosomes and mRNAs past the thylakoids to the plasma membrane. We infer a system to chaperone plasma membrane mRNAs to prevent their translation prior to arrival at the correct membrane. IMPORTANCE Cyanobacteria have a complex and distinct membrane system within the cytoplasm, the thylakoid membranes that house the photosynthetic light reactions. The thylakoid and plasma membranes contain distinct sets of proteins, but the steps that target proteins to the two membranes remain unclear. Knowledge of the protein sorting rules will be crucial for the biotechnological re-engineering of cyanobacterial cells, and for understanding the evolutionary development of the thylakoids. Here, we probe the subcellular locations of the mRNAs that encode cyanobacterial membrane proteins and the ribosomes that translate them. We show that thylakoid and plasma membrane proteins are produced at different locations, providing the first direct evidence for a sorting mechanism that operates prior to protein translation.


Assuntos
Cianobactérias , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hibridização in Situ Fluorescente , Cianobactérias/genética , Cianobactérias/metabolismo , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Membrana Celular/metabolismo
3.
Plant Physiol ; 189(3): 1204-1219, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35512089

RESUMO

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Adaptação Fisiológica , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tilacoides/metabolismo
4.
J Bacteriol ; 204(2): e0050421, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898262

RESUMO

Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multiprotein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however, little is known regarding their function, regulation, and secreted effectors. One such system, the type IVa pilus system (T4aPS), is responsible for the assembly of dynamic cell surface appendages, type IVa pili (T4aP), that mediate ecologically relevant processes such as phototactic motility, natural competence, and adhesion. Several studies have suggested that the T4aPS can also act as a two-step protein secretion system in cyanobacteria akin to the homologous type II secretion system in heterotrophic bacteria. To determine whether the T4aP are involved in two-step secretion of nonpilin proteins, we developed a NanoLuc (NLuc)-based quantitative secretion reporter for the model cyanobacterium Synechocystis sp. strain PCC 6803. The NLuc reporter presented a wide dynamic range with at least 1 order of magnitude more sensitivity than traditional immunoblotting. Application of the reporter to a collection of Synechocystis T4aPS mutants demonstrated that the two-step secretion of NLuc is independent of T4aP. In addition, our data suggest that secretion differences typically observed in T4aPS mutants are likely due to a disruption of cell envelope homeostasis. This study opens the door to exploring protein secretion in cyanobacteria further. IMPORTANCE Protein secretion allows bacteria to interact and communicate with the external environment. Secretion is also biotechnologically relevant, where it is often beneficial to target proteins to the extracellular space. Due to a shortage of quantitative assays, many aspects of protein secretion are not understood. Here, we introduce an NLuc-based secretion reporter in cyanobacteria. NLuc is highly sensitive and can be assayed rapidly and in small volumes. The NLuc reporter allowed us to clarify the role of type IVa pili in protein secretion and identify mutations that increase secretion yield. This study expands our knowledge of cyanobacterial secretion and offers a valuable tool for future studies of protein secretion systems in cyanobacteria.


Assuntos
Bioensaio/métodos , Luciferases/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas , Sistemas de Translocação de Proteínas/genética , Transporte Proteico , Synechocystis/genética
5.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32253342

RESUMO

Multicellularity in Cyanobacteria played a key role in their habitat expansion, contributing to the Great Oxidation Event around 2.45 billion to 2.32 billion years ago. Evolutionary studies have indicated that some unicellular cyanobacteria emerged from multicellular ancestors, yet little is known about how the emergence of new unicellular morphotypes from multicellular ancestors occurred. Our results give new insights into the evolutionary reversion from which the Gloeocapsopsis lineage emerged. Flow cytometry and microscopy results revealed morphological plasticity involving the patterned formation of multicellular morphotypes sensitive to environmental stimuli. Genomic analyses unveiled the presence of multicellularity-associated genes in its genome. Calcein-fluorescence recovery after photobleaching (FRAP) experiments confirmed that Gloeocapsopsis sp. strain UTEX B3054 carries out cell-to-cell communication in multicellular morphotypes but at slower time scales than filamentous cyanobacteria. Although traditionally classified as unicellular, our results suggest that Gloeocapsopsis displays facultative multicellularity, a condition that may have conferred ecological advantages for thriving as an extremophile for more than 1.6 billion years.IMPORTANCECyanobacteria are among the few prokaryotes that evolved multicellularity. The early emergence of multicellularity in Cyanobacteria (2.5 billion years ago) entails that some unicellular cyanobacteria reverted from multicellular ancestors. We tested this evolutionary hypothesis by studying the unicellular strain Gloeocapsopsis sp. UTEX B3054 using flow cytometry, genomics, and cell-to-cell communication experiments. We demonstrate the existence of a well-defined patterned organization of cells in clusters during growth, which might change triggered by environmental stimuli. Moreover, we found genomic signatures of multicellularity in the Gloeocapsopsis genome, giving new insights into the evolutionary history of a cyanobacterial lineage that has thrived in extreme environments since the early Earth. The potential benefits in terms of resource acquisition and the ecological relevance of this transient behavior are discussed.


Assuntos
Evolução Biológica , Cianobactérias/genética , Extremófilos/genética , Cianobactérias/classificação , Cianobactérias/fisiologia , Ecossistema , Extremófilos/classificação , Extremófilos/fisiologia , Genoma Bacteriano , Genômica , Filogenia
6.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262837

RESUMO

Motile strains of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 readily aggregate into flocs, or floating multicellular assemblages, when grown in liquid culture. As described here, we used confocal imaging to probe the structure of these flocs, and we developed a quantitative assay for floc formation based on fluorescence imaging of 6-well plates. The flocs are formed from strands of linked cells, sometimes packed into dense clusters but also containing voids with very few cells. Cells within the dense clusters show signs of nutrient stress, as judged by the subcellular distribution of green fluorescent protein (GFP)-tagged Vipp1 protein. We analyzed the effects on flocculation of a series of mutations that alter piliation and motility, including Δhfq, ΔpilB1, ΔpilT1, and ΔushA mutations and deletion mutations affecting major and minor pilins. The extent of flocculation is increased in the hyperpiliated ΔpilT1 mutant, but active cycles of pilus extension and retraction are not required for flocculation. Deletion of PilA1, the major subunit of type IV pili, has no effect on flocculation; however, flocculation is lost in mutants lacking an operon coding for the minor pilins PilA9 to -11. Therefore, minor pilins appear crucial for flocculation. We show that flocculation is a tightly regulated process that is promoted by blue light perception by the cyanobacteriochrome Cph2. Floc formation also seems to be a highly cooperative process. A proportion of nonflocculating Δhfq cells can be incorporated into wild-type flocs, but the presence of a high proportion of Δhfq cells disrupts the large-scale architecture of the floc.IMPORTANCE Some bacteria form flocs, which are multicellular floating assemblages of many thousands of cells. Flocs have been relatively little studied compared to surface-adherent biofilms, but flocculation could play many physiological roles, be a crucial factor in marine carbon burial, and enable more efficient biotechnological cell harvesting. We studied floc formation and architecture in the model cyanobacterium Synechocystis sp. strain PCC 6803, using mutants to identify specific cell surface structures required for floc formation. We show that floc formation is regulated by blue and green light perceived by the photoreceptor Cph2. The flocs have a characteristic structure based on strands of linked cells aggregating into dense clusters. Cells within the dense clusters show signs of nutrient stress, pointing to a disadvantage of floc formation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana/metabolismo , Mutação , Synechocystis/crescimento & desenvolvimento , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Fímbrias Bacterianas/genética , Floculação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Proteínas de Membrana/genética , Diester Fosfórico Hidrolases/genética , Proteínas Recombinantes/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
7.
Org Biomol Chem ; 17(15): 3752-3759, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30840015

RESUMO

Two truncated analogues of the polyenyl photoprotective xanthomonadin pigments have been synthesised utilising an iterative Heck-Mizoroki (HM)/iododeboronation cross coupling approach and investigated as models of the natural product photoprotective agents in bacteria. Despite the instability of these types of compounds, both analogues proved to be sufficiently stable to allow isolation, spectroscopic analysis and biological studies of their photoprotective behaviour which showed that despite their shorter polyene chain length, they retained the ability to protect bacteria from photochemical damage; i.e. incorporation of one compound into E. coli provided photoprotective activity against singlet oxygen analogous to the natural photoprotective mechanisms employed by Xanthomonas bacteria, answering key questions about what minimal functionality is required to impart photoprotection, potentially leading to new classes of photoprotective and antioxidants compounds.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Polienos/química , Protetores Solares/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/síntese química , Antioxidantes/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Protetores Solares/síntese química , Protetores Solares/química
8.
J Bacteriol ; 199(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096449

RESUMO

When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions.IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2 These organisms grow as filaments that fix these gases specifically in vegetative cells and heterocysts, respectively. For the filaments to grow, these types of cells exchange nutrients, including sucrose, which serves as a source of reducing power and of carbon skeletons for the heterocysts. Movement of sucrose between cells in the filament takes place through septal junctions and has been traced with a fluorescent sucrose analog, esculin, that can be taken up by the cells. Here, we identified α-glucoside transporters of Anabaena that mediate uptake of esculin and, notably, influence septal structure and the function of septal junctions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anabaena/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucosídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Anabaena/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Esculina/metabolismo , Mutação , Ligação Proteica
9.
Mol Microbiol ; 101(6): 968-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27273832

RESUMO

Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Anabaena/genética , Proteínas de Bactérias/genética , Difusão , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
10.
Plant Physiol ; 172(3): 1928-1940, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27707888

RESUMO

Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.


Assuntos
Divisão Celular/efeitos dos fármacos , Hidrocarbonetos/farmacologia , Synechocystis/citologia , Synechocystis/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Mutação/genética , Fotossíntese/efeitos dos fármacos , Synechocystis/efeitos dos fármacos , Synechocystis/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo
11.
Mol Microbiol ; 98(6): 998-1001, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26447922

RESUMO

Motility in cyanobacteria is useful for purposes that range from seeking out favourable light environments to establishing symbioses with plants and fungi. No known cyanobacterium is equipped with flagella, but a diverse range of species is able to 'glide' or 'twitch' across surfaces. Cyanobacteria with this capacity range from unicellular species to complex filamentous forms, including species such as Nostoc punctiforme, which can generate specialised motile filaments called hormogonia. Recent work on the model unicellular cyanobacterium Synechocystis sp. PCC 6803 has shown that its means of propulsion has much in common with the twitching motility of heterotrophs such as Pseudomonas and Myxococcus. Movement depends on Type IV pili, which are extended, adhere to the substrate and then retract to pull the cell across the surface. Previous work on filamentous cyanobacteria suggested a very different mechanism, with movement powered by the directional extrusion of polysaccharide from pores close to the cell junctions. Now a new report by Khayatan and colleagues in this issue of Molecular Microbiology suggests that the motility of Nostoc hormogonia has much more in common with Synechocystis than was previously thought. In both cases, polysaccharide secretion is important for preparing the surface, but the directional motive force comes from Type IV pili.


Assuntos
Cianobactérias , Fímbrias Bacterianas/metabolismo , Movimento Celular , Nostoc , Polissacarídeos/metabolismo , Synechocystis
12.
Mol Microbiol ; 96(3): 448-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25601560

RESUMO

In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub-cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP-tagged versions of its four FtsH proteases. The ftsH2-gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2-GFP patches represent Photosystem II 'repair zones' within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti-GFP affinity pull-downs provide the first indication of the composition of the putative repair zones.


Assuntos
Membrana Celular/química , Peptídeo Hidrolases/análise , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/química , Tilacoides/química , Membrana Celular/enzimologia , Microscopia Confocal , Synechocystis/enzimologia , Tilacoides/enzimologia
13.
J Bacteriol ; 197(4): 670-1, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25488297

RESUMO

Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676-687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Synechocystis/metabolismo
14.
Biochim Biophys Acta ; 1837(4): 503-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24316145

RESUMO

The thylakoid membranes of cyanobacteria are the major sites of respiratory electron transport as well as photosynthetic light reactions. The photosynthetic and respiratory electron transport chains share some components, and their presence in the same membrane opens up the possibility for a variety of "unorthodox" electron transport routes. Many of the theoretically possible electron transport pathways have indeed been detected in particular species and circumstances. Electron transport has a crucial impact on the redox balance of the cell and therefore the pathways of electron flow in the cyanobacterial thylakoid membrane must be tightly regulated. This review summarises what is known of cyanobacterial electron transport components, their interactions and their sub-cellular location. The role of thylakoid membrane organisation in controlling electron transport pathways is discussed with respect to recent evidence that the larger-scale distribution of complexes in the membrane is important for controlling electron exchange between the photosynthetic and respiratory complexes. The distribution of complexes on scales of 100nm or more is under physiological control, showing that larger-scale thylakoid membrane re-arrangement is a key factor in controlling the crosstalk between photosynthetic and respiratory electron transport. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Complexos Multienzimáticos/metabolismo , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Membrana Celular/metabolismo , Cianobactérias/metabolismo , Transporte de Elétrons , Modelos Biológicos , Oxirredução
15.
Biochim Biophys Acta ; 1837(6): 811-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24513194

RESUMO

Chemiosmotic energy coupling through oxidative phosphorylation (OXPHOS) is crucial to life, requiring coordinated enzymes whose membrane organization and dynamics are poorly understood. We quantitatively explore localization, stoichiometry, and dynamics of key OXPHOS complexes, functionally fluorescent protein-tagged, in Escherichia coli using low-angle fluorescence and superresolution microscopy, applying single-molecule analysis and novel nanoscale co-localization measurements. Mobile 100-200nm membrane domains containing tens to hundreds of complexes are indicated. Central to our results is that domains of different functional OXPHOS complexes do not co-localize, but ubiquinone diffusion in the membrane is rapid and long-range, consistent with a mobile carrier shuttling electrons between islands of different complexes. Our results categorically demonstrate that electron transport and proton circuitry in this model bacterium are spatially delocalized over the cell membrane, in stark contrast to mitochondrial bioenergetic supercomplexes. Different organisms use radically different strategies for OXPHOS membrane organization, likely depending on the stability of their environment.


Assuntos
Transporte de Elétrons , Escherichia coli/metabolismo , Fosforilação Oxidativa , Escherichia coli/enzimologia , Ubiquinona/metabolismo
16.
Mol Microbiol ; 94(6): 1208-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362990

RESUMO

Filamentous heterocyst-forming cyanobacteria are a beautiful example of prokaryotic multicellularity. The filaments can achieve simultaneous nitrogen fixation and oxygenic photosynthesis by cooperation between two cell types: the photosynthetic vegetative cells and the nitrogen-fixing heterocysts. The multicellular features exhibited by the system include differentiation of different cell types, metabolic interdependence and even pattern formation, as the spacing of heterocysts along the filament is non-random. Recent years have seen exciting progress both in understanding the control of heterocyst differentiation, and also in understanding the function of 'septal junctions': an array of pore-like structures at the cell junctions that allow intercellular communication by facilitating the diffusion of small molecules from cell to cell. A new report by Rivers et al. (2014) makes the connection between pattern formation and intercellular communication by showing that a mutation that partially disables the septal junctions leads to a decrease in the range of a signal dependent on the HetN protein that is one of the factors controlling heterocyst spacing. This suggests that the signal travels from cell to cell by diffusion through the septal junctions, opening the door to quantitative understanding of the mechanism that controls heterocyst spacing in filamentous cyanobacteria.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Mol Microbiol ; 92(4): 840-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24684190

RESUMO

The bacterial RNA-binding protein Hfq functions in post-transcriptional regulation of gene expression. There is evidence in a range of bacteria for specific subcellular localization of Hfq; however, the mechanism and role of Hfq localization remain unclear. Cyanobacteria harbour a subfamily of Hfq that is structurally conserved but exhibits divergent RNA binding sites. Mutational analysis in the cyanobacterium Synechocystis sp. PCC 6803 revealed that several conserved amino acids on the proximal side of the Hfq hexamer are crucial not only for Hfq-dependent RNA accumulation but also for phototaxis, the latter of which depends on type IV pili. Co-immunoprecipitation and yeast two-hybrid analysis show that the secretion ATPase PilB1 (a component of the type IV pilus base) is an interaction partner of Hfq. Fluorescence microscopy revealed that Hfq is localized to the cytoplasmic membrane in a PilB1-dependent manner. Concomitantly, Hfq-dependent RNA accumulation is abrogated in a ΔpilB1 mutant, indicating that localization to the pilus base via interaction with PilB1 is essential for Hfq function in cyanobacteria.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Oxirredutases/metabolismo , Synechocystis/genética , Análise Mutacional de DNA , Fator Proteico 1 do Hospedeiro/genética , Imunoprecipitação , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Synechocystis/metabolismo , Técnicas do Sistema de Duplo-Híbrido
18.
Mol Microbiol ; 92(5): 1142-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24735432

RESUMO

Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipídeos
19.
Mol Microbiol ; 91(5): 935-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24383541

RESUMO

The filamentous Section V cyanobacterium Mastigocladus laminosus is one of the most morphologically complex prokaryotes. It exhibits cellular division in multiple planes, resulting in the formation of true branches, and cell differentiation into heterocysts, hormogonia and necridia. Here, we investigate branch formation and intercellular communication in M. laminosus. Monitoring of membrane rearrangement suggests that branch formation results from a randomized direction of cell growth. Transmission electron microscopy reveals cell junction structures likely to be involved in intercellular communication. We identify a sepJ gene, coding for a potential key protein in intercellular communication, and show that SepJ is localized at the septa. To directly investigate intercellular communication, we loaded the fluorescent tracer 5-carboxyfluorescein diacetate into the cytoplasm, and quantified its intercellular exchange by fluorescence recovery after photobleaching. Results demonstrate connectivity of the main trichome and branches, enabling molecular exchange throughout the filament network. Necridia formation inhibits further molecular exchange, determining the fate of a branch likely to become a hormogonium. Cells in young, narrow trichomes and hormogonia exhibited faster exchange rates than cells in older, wider trichomes. Signal transduction to co-ordinate movement of hormogonia might be accelerated by reducing cell volume.


Assuntos
Cianobactérias/citologia , Células Procarióticas/citologia , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Cianobactérias/ultraestrutura , Fluoresceínas/metabolismo , Imunofluorescência , Dados de Sequência Molecular , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura
20.
Mol Microbiol ; 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25308470

RESUMO

The Vipp1 protein is essential in cyanobacteria and chloroplasts for the maintenance of photosynthetic function and thylakoid membrane architecture. To investigate its mode of action we generated strains of the cyanobacteria Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942 in which Vipp1 was tagged with green fluorescent protein at the C-terminus and expressed from the native chromosomal locus. There was little perturbation of function. Live-cell fluorescence imaging shows dramatic relocalisation of Vipp1 under high light. Under low light, Vipp1 is predominantly dispersed in the cytoplasm with occasional concentrations at the outer periphery of the thylakoid membranes. High light induces Vipp1 coalescence into localised puncta within minutes, with net relocation of Vipp1 to the vicinity of the cytoplasmic membrane and the thylakoid membranes. Pull-downs and mass spectrometry identify an extensive collection of proteins that are directly or indirectly associated with Vipp1 only after high-light exposure. These include not only photosynthetic and stress-related proteins but also RNA-processing, translation and protein assembly factors. This suggests that the Vipp1 puncta could be involved in protein assembly. One possibility is that Vipp1 is involved in the formation of stress-induced localised protein assembly centres, enabling enhanced protein synthesis and delivery to membranes under stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA