Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 587(7832): 92-97, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32879491

RESUMO

Quinones are produced and sensed in all kingdoms of life1-4. Plants are primary producers of quinone1,2, but the role of quinone as a signalling agent in plants remains largely unknown. One well-documented role of quinone is in the induction of haustoria (specialized feeding structures) in plants that parasitize roots, which occurs in the presence of the host-derived quinone compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ)5. However, how parasitic plants sense DMBQ remains unclear, as is whether nonparasitic plants are capable of sensing quinones. Here we use Arabidopsis thaliana and DMBQ as a model plant and quinone to show that DMBQ signalling occurs in Arabidopsis via elevation of cytosolic Ca2+ concentration. We performed a forward genetic screen in Arabidopsis that isolated DMBQ-unresponsive mutants, which we named cannot respond to DMBQ 1 (card1). The CANNOT RESPOND TO DMBQ 1 (CARD1; At5g49760, also known as HPCA1) gene encodes a leucine-rich-repeat receptor-like kinase that is highly conserved in land plants. In Arabidopsis, DMBQ triggers defence-related gene expression, and card1 mutants show impaired immunity against bacterial pathogens. In Phtheirospermum japonicum (a plant that parasitizes roots), DMBQ initiates Ca2+ signalling in the root and is important for the development of the haustorium. Furthermore, CARD1 homologues from this parasitic plant complement DMBQ-induced elevation of cytosolic Ca2+ concentration in the card1 mutant. Our results demonstrate that plants-unlike animals and bacteria-use leucine-rich-repeat receptor-like kinases for quinone signalling. This work provides insights into the role of quinone signalling and CARD1 functions in plants that help us to better understand the signalling pathways used during the formation of the haustorium in parasitic plants and in plant immunity in nonparasitic plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Benzoquinonas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Sinalização do Cálcio , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Mutação , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/genética
2.
Curr Biol ; 33(14): 2897-2911.e6, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37385256

RESUMO

Cell polarity-broadly defined as the asymmetric distribution of cellular activities and subcellular components within a cell-determines the geometry of cell growth and division during development. RHO GTPase proteins regulate the establishment of cell polarity and are conserved among eukaryotes. RHO of plant (ROP) proteins are a subgroup of RHO GTPases that are required for cellular morphogenesis in plants. However, how ROP proteins modulate the geometry of cell growth and division during the morphogenesis of plant tissues and organs is not well understood. To investigate how ROP proteins function during tissue development and organogenesis, we characterized the function of the single-copy ROP gene of the liverwort Marchantia polymorpha (MpROP). M. polymorpha develops morphologically complex three-dimensional tissues and organs exemplified by air chambers and gemmae, respectively. Mprop loss-of-function mutants form defective air chambers and gemmae, indicating ROP function is required for tissue development and organogenesis. During air chamber and gemma development in wild type, the MpROP protein is enriched to sites of polarized growth at the cell surface and accumulates at the expanding cell plate of dividing cells. Consistent with these observations, polarized cell growth is lost and cell divisions are misoriented in Mprop mutants. We propose that ROP regulates both polarized cell growth and cell division orientation in a coordinated manner to orchestrate tissue development and organogenesis in land plants.


Assuntos
Marchantia , Proteínas rho de Ligação ao GTP , Proteínas rho de Ligação ao GTP/genética , Divisão Celular , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Morfogênese , Marchantia/genética
3.
Curr Biol ; 33(24): 5515-5525.e4, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38039969

RESUMO

The algal ancestors of land plants underwent a transition from a unicellular to a multicellular body plan.1 This transition likely took place early in streptophyte evolution, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage.2 How this transition was brought about is unknown; however, it was likely facilitated by the evolution of novel mechanisms to spatially regulate morphogenesis. In land plants, RHO of plant (ROP) signaling plays a conserved role in regulating polarized cell growth and cell division orientation to orchestrate morphogenesis.3,4,5,6,7,8 ROP constitutes a plant-specific subfamily of the RHO GTPases, which are more widely conserved throughout eukaryotes.9,10 Although the RHO family originated in early eukaryotes,11,12 how and when the ROP subfamily originated had remained elusive. Here, we demonstrate that ROP signaling was established early in the streptophyte lineage, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage. This period corresponds to when the unicellular-to-multicellular transition likely took place in the streptophytes. In addition to being critical for the complex morphogenesis of extant land plants, we speculate that ROP signaling contributed to morphological evolution in early streptophytes.


Assuntos
Clorófitas , Embriófitas , Estreptófitas , Filogenia , Plantas , Embriófitas/genética , Estreptófitas/fisiologia
4.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145332

RESUMO

While post-transcriptional control is thought to be required at the periphery of neurons and glia, its extent is unclear. Here, we investigate systematically the spatial distribution and expression of mRNA at single molecule sensitivity and their corresponding proteins of 200 YFP trap lines across the intact Drosophila nervous system. 97.5% of the genes studied showed discordance between the distribution of mRNA and the proteins they encode in at least one region of the nervous system. These data suggest that post-transcriptional regulation is very common, helping to explain the complexity of the nervous system. We also discovered that 68.5% of these genes have transcripts present at the periphery of neurons, with 9.5% at the glial periphery. Peripheral transcripts include many potential new regulators of neurons, glia, and their interactions. Our approach is applicable to most genes and tissues and includes powerful novel data annotation and visualization tools for post-transcriptional regulation.


Assuntos
Proteínas de Drosophila , RNA Mensageiro , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/genética , Processamento Pós-Transcricional do RNA
5.
Nat Plants ; 6(12): 1468-1479, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230313

RESUMO

C4 photosynthesis evolved repeatedly from the ancestral C3 state, improving photosynthetic efficiency by ~50%. In most C4 lineages, photosynthesis is compartmented between mesophyll and bundle sheath cells, but how gene expression is restricted to these cell types is poorly understood. Using the C3 model Arabidopsis thaliana, we identified cis-elements and transcription factors driving expression in bundle sheath strands. Upstream of the bundle sheath preferentially expressed MYB76 gene, we identified a region necessary and sufficient for expression containing two cis-elements associated with the MYC and MYB families of transcription factors. MYB76 expression is reduced in mutant alleles for these transcription factors. Moreover, downregulated genes shared by both mutants are preferentially expressed in the bundle sheath. Our findings are broadly relevant for understanding the spatial patterning of gene expression, provide specific insights into mechanisms associated with the evolution of C4 photosynthesis and identify a short tuneable sequence for manipulating gene expression in the bundle sheath.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA