Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2303336121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588432

RESUMO

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column. Here, we mechanistically downscale climate models and quantify patterns of thermal stratification above mesophotic corals (depth 30 to 50 m) of the Great Barrier Reef (GBR). Stratification insulates many offshore regions of the GBR from heatwaves at the surface. However, this protection is lost once global average temperatures exceed ~3 °C above preindustrial, after which mesophotic temperatures surpass a recognized threshold of 30 °C for coral mortality. Bottom temperatures on the GBR (30 to 50 m) from 2050 to 2060 are estimated to increase by ~0.5 to 1 °C under lower climate emissions (SSP1-1.9) and ~1.2 to 1.7 °C under higher climate emissions (SSP5-8.5). In short, mesophotic coral reefs are also threatened by climate change and research might prioritize the sensitivity of such corals to stress.


Assuntos
Antozoários , Mudança Climática , Animais , Recifes de Corais , Temperatura , Água , Ecossistema
2.
Proc Natl Acad Sci U S A ; 121(10): e2313205121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408235

RESUMO

Marine protected areas (MPAs) are widely used for ocean conservation, yet the relative impacts of various types of MPAs are poorly understood. We estimated impacts on fish biomass from no-take and multiple-use (fished) MPAs, employing a rigorous matched counterfactual design with a global dataset of >14,000 surveys in and around 216 MPAs. Both no-take and multiple-use MPAs generated positive conservation outcomes relative to no protection (58.2% and 12.6% fish biomass increases, respectively), with smaller estimated differences between the two MPA types when controlling for additional confounding factors (8.3% increase). Relative performance depended on context and management: no-take MPAs performed better in areas of high human pressure but similar to multiple-use in remote locations. Multiple-use MPA performance was low in high-pressure areas but improved significantly with better management, producing similar outcomes to no-take MPAs when adequately staffed and appropriate use regulations were applied. For priority conservation areas where no-take restrictions are not possible or ethical, our findings show that a portfolio of well-designed and well-managed multiple-use MPAs represents a viable and potentially equitable pathway to advance local and global conservation.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Humanos , Biomassa , Peixes , Ecossistema
3.
Nature ; 558(7710): 396-400, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29904103

RESUMO

Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.


Assuntos
Antozoários/crescimento & desenvolvimento , Mudança Climática/estatística & dados numéricos , Recifes de Corais , Água do Mar/análise , Animais , Antozoários/metabolismo , Oceano Atlântico , Carbonatos/metabolismo , Oceano Índico , Modelos Teóricos , Oceanos e Mares
4.
Environ Monit Assess ; 196(2): 211, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285268

RESUMO

Disturbance-induced rubble accumulations are described as "killing fields" on coral reefs as coral recruits suffer high post-settlement mortality, creating a bottleneck for reef recovery. The increasing frequency of coral bleaching events, that can generate rubble once coral dies, has heightened concerns that rubble beds will become more widespread and persistent. But we currently lack the tools to predict where rubble is most likely to accumulate. Here, we developed a modelling framework to identify areas that are likely to accumulate rubble on forereef slopes across the Great Barrier Reef. The algorithm uses new high-resolution bathymetric and geomorphic datasets from satellite remote sensing. We found that 47 km of reef slope (3% of the entire reef surveyed), primarily in the southern region, could potentially reach 50% rubble cover. Despite being statistically significant (p < 0.001), the effects of depth and aspect on rubble cover were minimal, with a 0.2% difference in rubble cover between deeper and shallower regions, as well as a maximum difference of 0.8% among slopes facing various directions. Therefore, we conclude that the effects of depth and aspect were insufficient to influence ecological processes such as larval recruitment and recovery in different coral communities. Maps of potential rubble accumulation can be used to prioritise surveys and potential restoration, particularly after major disturbances have occurred.


Assuntos
Antozoários , Monitoramento Ambiental , Animais , Algoritmos , Recifes de Corais , Larva
5.
Glob Chang Biol ; 29(14): 4152-4160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097011

RESUMO

Projections of coral reefs under climate change have important policy implications, but most analyses have focused on the intensification of climate-related physical stress rather than explicitly modelling how coral populations respond to stressors. Here, we analyse the future of the Great Barrier Reef (GBR) under multiple, spatially realistic drivers which allows less impacted sites to facilitate recovery. Under a Representative Concentration Pathway (RCP) 2.6 CMIP5 climate ensemble, where warming is capped at ~2°C, GBR mean coral cover declined mid-century but approached present-day levels towards 2100. This is considerably more optimistic than most analyses. However, under RCP4.5, mean coral cover declined by >80% by late-century, and reached near zero under RCP ≥6.0. While these models do not allow for adaptation, they significantly extend past studies by revealing demographic resilience of coral populations to low levels of additional warming, though more pessimistic outcomes might be expected under CMIP6. Substantive coral populations under RCP2.6 would facilitate long-term genetic adaptation, adding value to ambitious greenhouse emissions mitigation.


Assuntos
Antozoários , Animais , Recifes de Corais , Mudança Climática , Aclimatação , Demografia
6.
Glob Chang Biol ; 29(14): 3869-3882, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310164

RESUMO

Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt. Knowledge shortfalls about corals' complex ecological and evolutionary dynamics, however, stymie predictions about potential adaptation to future conditions. Here, we review adaptation through the lens of quantitative genetics. We argue that coral adaptation studies can benefit greatly from "wild" quantitative genetic methods, where traits are studied in wild populations undergoing natural selection, genomic relationship matrices can replace breeding experiments, and analyses can be extended to examine genetic constraints among traits. In addition, individuals with advantageous genotypes for anticipated future conditions can be identified. Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is arrayed across geographic and environmental distances, providing greater context for predictions of phenotypic evolution at a metapopulation scale.


Assuntos
Antozoários , Animais , Antozoários/genética , Ecossistema , Recifes de Corais , Aclimatação , Genômica
7.
Nature ; 543(7647): 665-669, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28329771

RESUMO

Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.


Assuntos
Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecologia/organização & administração , Animais , Organismos Aquáticos , Biomassa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Ecologia/economia , Peixes , Objetivos , Internacionalidade , Dinâmica Populacional , Recursos Humanos
8.
Proc Natl Acad Sci U S A ; 117(52): 33170-33176, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376216

RESUMO

Sustainable development (SD) policies targeting marine economic sectors, designed to alleviate poverty and conserve marine ecosystems, have proliferated in recent years. Many developing countries are providing poor fishing households with new fishing boats (fishing capital) that can be used further offshore as a means to improve incomes and relieve fishing pressure on nearshore fish stocks. These kinds of policies are a marine variant of traditional SD policies focused on agriculture. Here, we evaluate ex ante economic and environmental impacts of provisions of fishing and agricultural capital, with and without enforcement of fishing regulations that prohibit the use of larger vessels in nearshore habitats. Combining methods from development economics, natural resource economics, and marine ecology, we use a unique dataset and modeling framework to account for linkages between households, business sectors, markets, and local fish stocks. We show that the policies investing capital in local marine fisheries or agricultural sectors achieve income gains for targeted households, but knock-on effects lead to increased harvest of nearshore fish, making them unlikely to achieve conservation objectives in rural coastal economies. However, pairing an agriculture stimulus with increasing enforcement of existing fisheries' regulations may lead to a win-win situation. While marine-based policies could be an important tool to achieve two of the United Nations Sustainable Development Goals (alleviate poverty and protect vulnerable marine resources), their success is by no means assured and requires consideration of land and marine socioeconomic linkages inherent in rural economies.

9.
Reg Environ Change ; 23(2): 66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125023

RESUMO

Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia-Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds.

10.
Glob Chang Biol ; 28(4): 1332-1341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783126

RESUMO

Tropical coral reefs are among the most sensitive ecosystems to climate change and will benefit from the more ambitious aims of the United Nations Framework Convention on Climate Change's Paris Agreement, which proposed to limit global warming to 1.5° rather than 2°C above pre-industrial levels. Only in the latest Intergovernmental Panel on Climate Change focussed assessment, the Coupled Model Intercomparison Project phase 6 (CMIP6), have climate models been used to investigate the 1.5° warming scenario directly. Here, we combine the most recent model updates from CMIP6 with a semi-dynamic downscaling to evaluate the difference between the 1.5 and 2°C global warming targets on coral thermal stress metrics for the Great Barrier Reef (GBR). By ~2080, severe bleaching events are expected to occur annually under intensifying emissions (shared socioeconomic pathway SSP5-8.5). Adherence to 2° warming (SSP1-2.6) halves this frequency but the main benefit of confining warming to 1.5° (SSP1-1.9) is that bleaching events are reduced further to 3 events per decade. Attaining low emissions of 1.5° is also paramount to prevent the mean magnitude of thermal stress from stabilizing close to a critical thermal threshold (8 Degree Heating Weeks). Thermal stress under the more pessimistic pathways SSP3-7.0 and SSP5-8.5 is three to fourfold higher than the present day, with grave implications for future reef ecosystem health. As global warming continues, our projections also indicate more regional warming in the central and southern GBR than the far north and northern GBR.


Assuntos
Antozoários , Ecossistema , Animais , Mudança Climática , Recifes de Corais , Aquecimento Global , Temperatura
11.
Glob Chang Biol ; 28(19): 5768-5780, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916134

RESUMO

Increases in the magnitude, frequency, and duration of warm seawater temperatures are causing mass coral mortality events across the globe. Although, even during the most extensive bleaching events, some reefs escape exposure to severe stress, constituting potential refugia. Here, we identify present-day climate refugia on the Great Barrier Reef (GBR) and project their persistence into the future. To do this, we apply semi-dynamic downscaling to an ensemble of climate projections released for the IPCC's recent sixth Assessment Report. We find that GBR locations experiencing the least thermal stress over the past 20 years have done so because of their oceanographic circumstance, which implies that longer-term persistence of climate refugia is feasible. Specifically, tidal and wind mixing of warm water away from the sea surface appears to provide relief from warming. However, on average this relative advantage only persists until global warming exceeds ~3°C.


Assuntos
Antozoários , Refúgio de Vida Selvagem , Animais , Clima , Mudança Climática , Recifes de Corais , Aquecimento Global
12.
Glob Chang Biol ; 28(16): 4751-4764, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451154

RESUMO

Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs.


Assuntos
Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Humanos
13.
Glob Chang Biol ; 28(5): 1753-1765, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343392

RESUMO

Over this century, coral reefs will run the gauntlet of climate change, as marine heatwaves (MHWs) become more intense and frequent, and ocean acidification (OA) progresses. However, we still lack a quantitative assessment of how, and to what degree, OA will moderate the responses of corals to MHWs as they intensify throughout this century. Here, we first projected future MHW intensities for tropical regions under three future greenhouse gas emissions scenario (representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5) for the near-term (2021-2040), mid-century (2041-2060) and late-century (2081-2100). We then combined these MHW intensity projections with a global data set of 1,788 experiments to assess coral attribute performance and survival under the three emissions scenarios for the near-term, mid-century and late-century in the presence and absence of OA. Although warming and OA had predominately additive impacts on the coral responses, the contribution of OA in affecting most coral attributes was minor relative to the dominant role of intensifying MHWs. However, the addition of OA led to greater decreases in photosynthesis and survival under intermediate and unrestricted emissions scenario for the mid- and late-century than if intensifying MHWs were considered as the only driver. These results show that role of OA in modulating coral responses to intensifying MHWs depended on the focal coral attribute and extremity of the scenario examined. Specifically, intensifying MHWs and OA will cause increasing instances of coral bleaching and substantial declines in coral productivity, calcification and survival within the next two decades under the low and intermediate emissions scenario. These projections suggest that corals must rapidly adapt or acclimatize to projected ocean conditions to persist, which is far more likely under a low emissions scenario and with increasing efforts to manage reefs to enhance resilience.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
14.
PLoS Biol ; 17(11): e3000510, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714938

RESUMO

Despite general and wide-ranging negative effects of coral reef degradation on reef communities, hope might exist for reef-associated predators that use nursery habitats. When reef structural complexity is lost, refuge density declines and prey vulnerability increases. Here, we explore whether the presence of nursery habitats can promote high predator productivity on degraded reefs by mitigating the costs of increased vulnerability in early life, whilst allowing for the benefits of increased food availability in adulthood. We apply size-based ecosystem models of coral reefs with high and low structural complexity to predict fish biomass and productivity in the presence and absence of mangrove nurseries. Our scenarios allow us to elucidate the interacting effects of refuge availability and ontogenetic habitat shifts for fisheries productivity. We find that low complexity, degraded reefs with nurseries can support fisheries productivity that is equal to or greater than that in complex reefs that lack nurseries. We compare and validate model predictions with field data from Belize. Our results should inform reef fisheries management strategies and protected areas now and into the future.


Assuntos
Recifes de Corais , Pesqueiros , Peixes/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Densidade Demográfica , Dinâmica Populacional , Áreas Alagadas
15.
J Anim Ecol ; 91(11): 2203-2219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054747

RESUMO

Biodiversity of terrestrial and marine ecosystems, including coral reefs, is dominated by small, often cryptic, invertebrate taxa that play important roles in ecosystem structure and functioning. While cryptofauna community structure is determined by strong small-scale microhabitat associations, the extent to which ecological and environmental factors shape these communities are largely unknown, as is the relative importance of particular microhabitats in supporting reef trophodynamics from the bottom up. The goal of this study was to address these knowledge gaps, provided coral reefs are increasingly exposed to multiple disturbances and environmental gradients that influence habitat complexity, condition and ecosystem functioning. We compared the density, biomass, size range, phylogenetic diversity and functional roles of motile cryptofauna in Palau, Western Micronesia, among four coral-derived microhabitats representing various states of degradation (live coral [Acropora and Pocillopora], dead coral and coral rubble) from reefs along a gradient of effluent exposure. In total, 122 families across ten phyla were identified, dominated by the Arthropoda (Crustacea) and Mollusca. Cryptofauna biomass was greatest in live Pocillopora, while coral rubble contained the greatest density and diversity. Size ranges were broader in live corals than both dead coral and rubble. From a bottom-up perspective, effluent exposure had mixed effects on cryptic communities including a decline in total biomass in rubble. From a top-down perspective, cryptofauna were generally unaffected by predator biomass. Our data show that, as coral reef ecosystems continue to decline in response to more frequent and severe disturbances, habitats other than live coral may become increasingly important in supporting coral reef biodiversity and food webs.


Assuntos
Antozoários , Ecossistema , Animais , Filogenia , Recifes de Corais , Antozoários/fisiologia , Biodiversidade , Peixes/fisiologia
16.
Glob Chang Biol ; 27(18): 4307-4321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34106494

RESUMO

Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Ecossistema , Temperatura
17.
Glob Chang Biol ; 27(21): 5532-5546, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391212

RESUMO

Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change.


Assuntos
Antozoários , Animais , Mudança Climática , Recifes de Corais , Oceanos e Mares , Temperatura
18.
Conserv Biol ; 35(5): 1473-1483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33909928

RESUMO

By 2004, Belize was exhibiting classic fishing down of the food web. Groupers (Serranidae) and snappers (Lutjanidae) were scarce and fisheries turned to parrotfishes (Scarinae), leading to a 41% decline in their biomass. Several policies were enacted in 2009-2010, including a moratorium on fishing parrotfish and a new marine park with no-take areas. Using a 20-year time series on reef fish and benthos, we evaluated the impact of these policies approximately 10 years after their implementation. Establishment of the Southwater Caye Marine Reserve led to a recovery of snapper at 2 out of 3 sites, but there was no evidence of recovery outside the reserve. Snapper populations in an older reserve continued to increase, implying that at least 9 years is required for their recovery. Despite concerns over the feasibility of banning parrotfish harvest once it has become a dominant fin fishery, parrotfishes returned and exceeded biomass levels prior to the fishery. The majority of these changes involved an increase in parrotfish density; species composition and adult body size generally exhibited little change. Recovery occurred equally well in reserves and areas open to other forms of fishing, implying strong compliance. Temporal trends in parrotfish grazing intensity were strongly negatively associated with the cover of macroalgae, which by 2018 had fallen to the lowest levels observed since measurements began in 1998. Coral populations remained resilient and continued to exhibit periods of net recovery after disturbance. We found that a moratorium on parrotfish harvesting is feasible and appears to help constrain macroalgae, which can otherwise impede coral resilience.


Reservas Marinas, Vedas Pesqueras y 20 Años de Cambios Positivos en un Ecosistema de Arrecife de Coral Resumen Para el año 2004, Belice estaba exhibiendo la clásica pesca de los niveles más bajos de las cadenas alimenticias marinas. Los meros (Serranidae) y los pargos (Lutjanidae) eran escasos y las pesquerías comenzaron a consumir a los peces loro (Scarinae), lo que resultó en una declinación del 41% de su biomasa. Entre el 2009 y el 2010 se promulgaron varias políticas, incluyendo una moratoria para la pesca del pez loro y un nuevo parque marino con zonas de no consumo. Mediante una serie temporal de 20 años para los peces de arrecifes y el bentos, evaluamos el impacto de estas políticas aproximadamente diez años después de su implementación. La creación de la Reserva Marina del Cayo Southwater resultó en la recuperación del pargo en dos de tres sitios, pero no hubo evidencias de la recuperación fuera de la reserva. Las poblaciones de pargos en una reserva más vieja continuaron su incremento, lo que implica que se requieren al menos nueve años para su recuperación. A pesar de la preocupación por la viabilidad de la veda para el pez loro una vez que se haya convertido en una pesquería dominante, los peces loro regresaron al sitio de pesca y excedieron los niveles de biomasa previos a la pesquería. La mayoría de estos cambios involucró un incremento en la densidad de los peces loro; la composición de especies y la talla corporal adulta generalmente exhibieron pocos cambios. La recuperación ocurrió equitativamente bien en las reservas y en las áreas abiertas a otras formas de pesca, lo que implica un estricto cumplimiento de las restricciones. Las tendencias temporales en la intensidad de pastoreo de los peces loro estuvieron fuertemente asociadas de manera negativa con la cobertura de macroalgas, la cual para el 2018 había caído a los niveles más bajos observados desde que se comenzó a medir en 1998. Las poblaciones coralinas permanecieron resilientes y continuaron exhibiendo periodos de recuperación neta después de la perturbación. Descubrimos que una moratoria para la pesca de pez loro es viable y parece ayudar a restringir las macroalgas, las cuales de otra forma pueden impedir la resiliencia del coral.


Assuntos
Antozoários , Recifes de Corais , Animais , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Peixes
19.
Oecologia ; 195(1): 225-234, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33394129

RESUMO

Unraveling the processes that drive diversity patterns remains a central challenge for ecology, and an increased understanding is especially urgent to address and mitigate escalating diversity loss. Studies have primarily focused on singular taxonomic groups, but recent research has begun evaluating spatial diversity patterns across multiple taxonomic groups and suggests taxa may have congruence in their diversity patterns. Here, we use surveys of the coral reef benthic groups: scleractinian corals, macroalgae, sponges and gorgonians conducted in the Bahamian Archipelago across 27 sites to determine if there is congruence between taxonomic groups in their site-level diversity patterns (i.e. alpha diversity: number of species, and beta diversity: differences in species composition) while accounting for environmental predictors (i.e. depth, wave exposure, market gravity (i.e. human population size and distance to market), primary productivity, and grazing). Overall, we found that the beta diversities of these benthic groups were significant predictors of each other. The most consistent relationships existed with algae and coral, as their beta diversity was a significant predictor of every other taxa's beta diversity, potentially due to their strong biotic interactions and dominance on the reef. Conversely, we found no congruence patterns in the alpha diversity of the taxa. Market gravity and exposure showed the most prevalent correlation with both alpha and beta diversity for the taxa. Overall, our results suggest that coral reef benthic taxa can have spatial congruence in species composition, but not number of species, and that future research on biodiversity trends should consider that taxa may have non-independent patterns.


Assuntos
Antozoários , Alga Marinha , Animais , Biodiversidade , Recifes de Corais , Ecologia , Humanos
20.
Proc Biol Sci ; 287(1941): 20202575, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323081

RESUMO

Sedimentation and overfishing are important local stressors on coral reefs that can independently result in declines in coral recruitment and shifts to algal-dominated states. However, the role of herbivory in driving recovery across environmental gradients is often unclear. Here we investigate early successional benthic communities and coral recruitment across a sediment gradient in Palau, Micronesia over a 12-month period. Total sedimentation rates measured by 'TurfPods' varied from 0.03 ± 0.1 SE mg cm-2 d-1 at offshore sites to 1.32 ± 0.2 mg cm-2 d-1 at inshore sites. To assess benthic succession, three-dimensional settlement tiles were deployed at sites with experimental cages used to exclude tile access to larger herbivorous fish. Benthic assemblages exhibited rapid transitions across the sediment gradient within three months of deployment. At low levels of sedimentation (less than 0.6 mg cm-2 d-1), herbivory resulted in communities dominated by coral recruitment inducers (short turf algae and crustose coralline algae), whereas exclusion of herbivores resulted in the overgrowth of coral inhibitors (encrusting and upright foliose macroalgae). An 'inducer threshold' was found under increasing levels of sedimentation (greater than 0.6 mg cm-2 d-1), with coral inducers having limited to no presence in communities, and herbivore access to tiles resulted in sediment-laden turf algal assemblages, while exclusion of herbivores resulted in invertebrates (sponges, ascidians) and terrestrial sediment accumulation. A 'coral recruitment threshold' was found at 0.8 mg cm-2 d-1, below which net coral recruitment was reduced by 50% in the absence of herbivores, while recruitment was minimal above the threshold. Our results highlight nonlinear trajectories of benthic succession across sediment gradients and identify strong interactions between sediment and herbivory that have cascading effects on coral recruitment. Local management strategies that aim to reduce sedimentation and turbidity and manage herbivore fisheries can have measurable effects on benthic community succession and coral recruitment, enhancing reef resilience and driving coral recovery.


Assuntos
Antozoários , Conservação dos Recursos Naturais , Recifes de Corais , Herbivoria , Animais , Pesqueiros , Peixes , Alga Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA