Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709532

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Masculino , Feminino , Animais , Camundongos , Gangliosidose GM1/genética , Camundongos Knockout , beta-Galactosidase/genética , Doenças por Armazenamento dos Lisossomos/genética , Éxons
2.
Immunity ; 40(2): 187-98, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24485804

RESUMO

Recent epidemiological studies have identified interferon regulatory factor 8 (IRF8) as a susceptibility factor for multiple sclerosis (MS). However, how IRF8 influences the neuroinflammatory disease has remained unknown. By studying the role of IRF8 in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we found that Irf8(-/-) mice are resistant to EAE. Furthermore, expression of IRF8 in antigen-presenting cells (APCs, such as macrophages, dendritic cells, and microglia), but not in T cells, facilitated disease onset and progression through multiple pathways. IRF8 enhanced αvß8 integrin expression in APCs and activated TGF-ß signaling leading to T helper 17 (Th17) cell differentiation. IRF8 induced a cytokine milieu that favored growth and maintenance of Th1 and Th17 cells, by stimulating interleukin-12 (IL-12) and IL-23 production, but inhibiting IL-27 during EAE. Finally, IRF8 activated microglia and exacerbated neuroinflammation. Together, this work provides mechanistic bases by which IRF8 contributes to the pathogenesis of MS.


Assuntos
Inflamação/fisiopatologia , Integrinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Citometria de Fluxo , Fatores Reguladores de Interferon/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética
3.
Hum Mol Genet ; 28(9): 1530-1547, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602030

RESUMO

Epilepsy, deafness, onychodystrophy, osteodystrophy and intellectual disability are associated with a spectrum of mutations of human TBC1D24. The mechanisms underlying TBC1D24-associated disorders and the functions of TBC1D24 are not well understood. Using CRISPR-Cas9 genome editing, we engineered a mouse with a premature translation stop codon equivalent to human S324Tfs*3, a recessive mutation of TBC1D24 associated with early infantile epileptic encephalopathy (EIEE). Homozygous S324Tfs*3 mice have normal auditory and vestibular functions but show an abrupt onset of spontaneous seizures at postnatal day 15 recapitulating human EIEE. The S324Tfs*3 variant is located in an alternatively spliced micro-exon encoding six perfectly conserved amino acids incorporated postnatally into TBC1D24 protein due to a micro-exon utilization switch. During embryonic and early postnatal development, S324Tfs*3 homozygotes produce predominantly the shorter wild-type TBC1D24 protein isoform that omits the micro-exon. S324Tfs*3 homozygotes show an abrupt onset of seizures at P15 that correlates with a developmental switch to utilization of the micro-exon. A mouse deficient for alternative splice factor SRRM3 impairs incorporation of the Tbc1d24 micro-exon. Wild-type Tbc1d24 mRNA is abundantly expressed in the hippocampus using RNAscope in situ hybridization. Immunogold electron microscopy using a TBC1D24-specific antibody revealed that TBC1D24 is associated with clathrin-coated vesicles and synapses of hippocampal neurons, suggesting a crucial role of TBC1D24 in vesicle trafficking important for neuronal signal transmission. This is the first characterization of a mouse model of human TBC1D24-associated EIEE that can now be used to screen for antiepileptogenic drugs ameliorating TBCID24 seizure disorders.


Assuntos
Proteínas Ativadoras de GTPase/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Alelos , Animais , Biomarcadores , Encéfalo/metabolismo , Análise Mutacional de DNA , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(51): E12024-E12033, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514812

RESUMO

The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.


Assuntos
Diazo-Oxo-Norleucina/antagonistas & inibidores , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/antagonistas & inibidores , Imageamento por Ressonância Magnética/métodos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/patologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia , Adulto , Animais , Antimaláricos/uso terapêutico , Biomarcadores , Barreira Hematoencefálica/patologia , Encéfalo/parasitologia , Encéfalo/patologia , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/patologia , Criança , Diazo-Oxo-Norleucina/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Malária Cerebral/diagnóstico por imagem , Malária Cerebral/parasitologia , Malária Falciparum/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium falciparum/patogenicidade
5.
Bioconjug Chem ; 30(6): 1821-1829, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31117347

RESUMO

Magnetic resonance imaging (MRI) diagnosis is better assisted by contrast agents that can augment the signal contrast in the imaging appearance. However, this technique is still limited by the inherently low sensitivity on the recorded signal changes in conventional T1 or T2 MRI in a qualitative manner. Here, we provide a new paradigm of MRI diagnosis using T1- T2 dual-modal MRI contrast agents for contrast-enhanced postimaging computations on T1 and T2 relaxation changes. An albumin-binding molecule (i.e., truncated Evans blue) chelated with paramagnetic manganese ion was developed as a novel T1- T2 dual-modal MRI contrast agent at high magnetic field (7 T). Furthermore, the postimaging computations on T1- T2 dual-modal MRI led to greatly enhanced signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) in both subcutaneous and orthotopic brain tumor models compared with traditional MRI methods. The T1- T2 dual-modal MRI computations have great potential to eliminate suspicious artifacts and false-positive signals in mouse brain imaging. This study may open new avenues for contrast-enhanced MRI diagnosis and holds great promise for precision medicine.


Assuntos
Albuminas/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Camundongos , Sensibilidade e Especificidade
6.
Circ Res ; 121(12): 1360-1369, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29051340

RESUMO

RATIONALE: Cryptogenic strokes, those of unknown cause, have been estimated as high as 30% to 40% of strokes. Inflammation has been suggested as a critical etiologic factor. However, there is lack of experimental evidence. OBJECTIVE: In this study, we investigated inflammation-associated stroke using a mouse model that developed spontaneous stroke because of myeloid deficiency of TGF-ß (transforming growth factor-ß) signaling. METHODS AND RESULTS: We report that mice with deletion of Tgfbr2 in myeloid cells (Tgfbr2Myeko) developed cerebrovascular inflammation in the absence of significant pathology in other tissues, culminating in stroke and severe neurological deficits with 100% penetrance. The stroke phenotype can be transferred to syngeneic wild-type mice via Tgfbr2Myeko bone marrow transplant and can be rescued in Tgfbr2Myeko mice with wild-type bone marrow. The underlying mechanisms involved an increased type 1 inflammation and cerebral endotheliopathy, characterized by elevated NF-κB (nuclear factor-κB) activation and TNF (tumor necrosis factor) production by myeloid cells. A high-fat diet accelerated stroke incidence. Anti-TNF treatment, as well as metformin and methotrexate, which are associated with decreased stroke risk in population studies, delayed stroke occurrence. CONCLUSIONS: Our studies show that TGF-ß signaling in myeloid cells is required for maintenance of vascular health and provide insight into inflammation-mediated cerebrovascular disease and stroke.


Assuntos
Células Mieloides/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Linhagem Celular , Imunossupressores/uso terapêutico , Inflamação/complicações , Inflamação/metabolismo , Metformina/uso terapêutico , Metotrexato/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Penetrância , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Hum Mol Genet ; 25(23): 5111-5125, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27638887

RESUMO

Hereditary spastic paraplegias (HSPs; SPG1-76 plus others) are length-dependent disorders affecting long corticospinal axons, and the most common autosomal dominant forms are caused by mutations in genes that encode the spastin (SPG4), atlastin-1 (SPG3A) and REEP1 (SPG31) proteins. These proteins bind one another and shape the tubular endoplasmic reticulum (ER) network throughout cells. They also are involved in lipid droplet formation, enlargement, or both in cells, though mechanisms remain unclear. Here we have identified evidence of partial lipoatrophy in Reep1 null mice in addition to prominent spastic paraparesis. Furthermore, Reep1-/- embryonic fibroblasts and neurons in the cerebral cortex both show lipid droplet abnormalities. The apparent partial lipodystrophy in Reep1 null mice, although less severe, is reminiscent of the lipoatrophy phenotype observed in the most common form of autosomal recessive lipodystrophy, Berardinelli-Seip congenital lipodystrophy. Berardinelli-Seip lipodystrophy is caused by autosomal recessive mutations in the BSCL2 gene that encodes an ER protein, seipin, that is also mutated in the autosomal dominant HSP SPG17 (Silver syndrome). Furthermore, REEP1 co-immunoprecipitates with seipin in cells. This strengthens the link between alterations in ER morphogenesis and lipid abnormalities, with important pathogenic implications for the most common forms of HSP.


Assuntos
Retículo Endoplasmático/genética , Lipodistrofia Generalizada Congênita/genética , Proteínas de Membrana Transportadoras/genética , Paraplegia Espástica Hereditária/genética , Animais , Axônios/metabolismo , Axônios/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Lipodistrofia Generalizada Congênita/metabolismo , Lipodistrofia Generalizada Congênita/fisiopatologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Morfogênese/genética , Mutação , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/fisiopatologia
8.
Eur J Nucl Med Mol Imaging ; 45(4): 585-592, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29285548

RESUMO

PURPOSE: 11C-methionine (MET) is one of the most commonly used amino acid tracers for PET imaging of brain tumors. In this study, we report an 18F-labeled boron-derived methionine analogue, denoted as 18F-B-MET, as a potential substitute of 11C-MET for glioma PET imaging. METHODS: 19F-B-MET was synthesized from readily available chemicals according to our previous publication. For kit development, 19F-B-MET was aliquoted in quantities of 10 nmol for on-demand one-step labeling. The 18F-labeling was performed by 18F-19F isotope exchange, and quality control was performed by both HPLC and radio-TLC. Uptake of the tracer was determined in GL26, C6 and U87 tumor cells. PET imaging and the biodistribution assay were performed on mice bearing subcutaneous or orthotopic C6 and U87 tumor xenografts. RESULTS: Starting with 740-1110 MBq 18F-fluoride, >370 MBq of 18F-B-MET was obtained in 25 min (n = 5) with >99% purity and high specific activity (>37 GBq/µmol). 18F-B-MET demonstrated excellent in vitro stability with <1% decomposition after incubation with plasma for 2 h. In vitro cell uptake assay showed that 18F-B-MET accumulated in tumor cells in a time dependent manner and could be competitively inhibited by natural methionine and other L-type transporter transported amino acids. In vivo biodistribution and imaging studies showed high tumor accumulation (2.99 ± 0.23 %ID/g, n = 6) compared with low uptake of brain (0.262 ± 0.05 %ID/g, n = 6) at 60 min after injection in a subcutaneous C6 tumor model. Orthotropic C6 and U87 tumors were clearly visualized with high tumor to brain ratios at 60 min post-injection, corroborating with tumor L-type amino acid transporter 1 (LAT-1) expression levels. CONCLUSION: 18F-B-MET was radiolabeled with high yield in a one-step labeling process, showed excellent pharmacokinetic properties in vivo, with high tumor-to-brain contrast.


Assuntos
Glioma/diagnóstico por imagem , Glioma/diagnóstico , Tomografia por Emissão de Pósitrons , Animais , Compostos de Boro/farmacocinética , Neoplasias Encefálicas , Linhagem Celular Tumoral , Radioisótopos de Flúor/farmacocinética , Metionina/farmacocinética , Camundongos , Distribuição Tecidual
9.
Hum Mol Genet ; 24(13): 3775-91, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25859007

RESUMO

Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies.


Assuntos
Cílios/metabolismo , Hidrocefalia/genética , Doenças Renais Císticas/genética , Proteínas Nucleares/genética , Animais , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cílios/genética , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Feminino , Humanos , Hidrocefalia/metabolismo , Doenças Renais Císticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Especificidade de Órgãos
10.
J Autoimmun ; 81: 13-23, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28325644

RESUMO

TREX1/DNASE III, the most abundant 3'-5' DNA exonuclease in mammalian cells, is tail-anchored on the endoplasmic reticulum (ER). Mutations at the N-terminus affecting TREX1 DNase activity are associated with autoimmune and inflammatory conditions such as Aicardi-Goutières syndrome (AGS). Mutations in the C-terminus of TREX1 cause loss of localization to the ER and dysregulation of oligosaccharyltransferase (OST) activity, and are associated with retinal vasculopathy with cerebral leukodystrophy (RVCL) and in some cases with systemic lupus erythematosus (SLE). Here we investigate mice with conditional expression of the most common RVCL mutation, V235fs, and another mouse expressing a conditional C-terminal mutation, D272fs, associated with a case of human SLE. Mice homozygous for either mutant allele express the encoded human TREX1 truncations without endogenous mouse TREX1, and both remain DNase active in tissues. The two mouse strains are similar phenotypically without major signs of retinal, cerebral or renal disease but exhibit striking elevations of autoantibodies in the serum. The broad range of autoantibodies is primarily against non-nuclear antigens, in sharp contrast to the predominantly DNA-related autoantibodies produced by a TREX1-D18N mouse that specifically lacks DNase activity. We also found that treatment with an OST inhibitor, aclacinomycin, rapidly suppressed autoantibody production in the TREX1 frame-shift mutant mice. Together, our study presents two new mouse models based on TREX1 frame-shift mutations with a unique set of serologic autoimmune-like phenotypes.


Assuntos
Autoimunidade/genética , Autoimunidade/imunologia , Exodesoxirribonucleases/genética , Mutação da Fase de Leitura , Fosfoproteínas/genética , Aclarubicina/análogos & derivados , Aclarubicina/farmacologia , Substituição de Aminoácidos , Animais , Apoptose/genética , Apoptose/imunologia , Autoanticorpos/imunologia , Autoimunidade/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação Enzimática , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Retina/imunologia , Retina/metabolismo , Retina/patologia , Timócitos/imunologia , Timócitos/metabolismo , Transcriptoma
11.
Hum Mol Genet ; 21(10): 2233-44, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331300

RESUMO

Disruption of the blood-brain barrier (BBB) is a serious complication frequently encountered in neurodegenerative disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. It remains unclear whether BBB is disrupted in INCL and if so, what might be the molecular mechanism(s) of this complication. We previously reported that the Ppt1-knockout (Ppt1-KO) mice that mimic INCL manifest high levels of oxidative stress and neuroinflammation. Recently, it has been reported that CD4(+) T-helper 17 (T(H)17) lymphocytes may mediate BBB disruption and neuroinflammation, although the precise molecular mechanism(s) remain unclear. We sought to determine: (i) whether the BBB is disrupted in Ppt1-KO mice, (ii) if so, do T(H)17-lymphocytes underlie this complication, and (iii) how might T(H)17 lymphocytes breach the BBB. Here, we report that the BBB is disrupted in Ppt1-KO mice and that T(H)17 lymphocytes producing IL-17A mediate disruption of the BBB by stimulating production of matrix metalloproteinases (MMPs), which degrade the tight junction proteins essential for maintaining BBB integrity. Importantly, dietary supplementation of resveratrol (RSV), a naturally occurring antioxidant/anti-inflammatory polyphenol, markedly reduced the levels of T(H)17 cells, IL-17A and MMPs, and elevated the levels of tight junction proteins, which improved the BBB integrity in Ppt1-KO mice. Intriguingly, we found that RSV suppressed the differentiation of CD4(+) T lymphocytes to IL-17A-positive T(H)17 cells. Our findings uncover a mechanism by which T(H)17 lymphocytes mediate BBB disruption and suggest that small molecules such as RSV that suppress T(H)17 differentiation are therapeutic targets for neurodegenerative disorders such as INCL.


Assuntos
Barreira Hematoencefálica/metabolismo , Inibidores Enzimáticos/farmacologia , Camundongos , Lipofuscinoses Ceroides Neuronais/metabolismo , Estilbenos/farmacologia , Tioléster Hidrolases/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/enzimologia , Resveratrol , Tioléster Hidrolases/metabolismo
12.
Behav Genet ; 44(5): 498-515, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997773

RESUMO

Atypical Chemokine Receptor 1 (ACKR1), previously known as Duffy Antigen Receptor for Chemokines, stands out among chemokine receptors for high selective expression on cerebellar Purkinje neurons. Although ACKR1 ligands activate Purkinje cells in vitro, evidence for ACKR1 regulation of brain function in vivo is lacking. Here we demonstrate that Ackr1 (-/-) mice have markedly impaired balance and ataxia on a rotating rod and increased tremor when injected with harmaline, which induces whole-body tremor by activating Purkinje cells. Ackr1 (-/-) mice also exhibited impaired exploratory behavior, increased anxiety-like behavior and frequent episodes of marked hypoactivity under low-stress conditions. Surprisingly, Ackr1 (+/-) had similar behavioral abnormalities, indicating pronounced haploinsufficiency. The behavioral phenotype of Ackr1 (-/-) mice was the opposite of mouse models of cerebellar degeneration, and the defects persisted when Ackr1 was deficient only on non-hematopoietic cells. Together, the results suggest that normal motor function and behavior may partly depend on negative regulation of Purkinje cell activity by Ackr1.


Assuntos
Sistema do Grupo Sanguíneo Duffy , Atividade Motora , Células de Purkinje , Receptores de Superfície Celular , Animais , Feminino , Masculino , Camundongos , Sistema do Grupo Sanguíneo Duffy/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Células de Purkinje/metabolismo , Receptores de Superfície Celular/metabolismo
13.
Magn Reson Med ; 69(5): 1443-50, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22692861

RESUMO

The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Animais , Antineoplásicos/uso terapêutico , Radioisótopos de Carbono/farmacocinética , Carcinoma de Células Escamosas/diagnóstico , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Camundongos , Imagem Molecular/métodos , Piruvatos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
14.
NMR Biomed ; 26(9): 1125-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23606437

RESUMO

Disseminated candidiasis primarily targets the kidneys and brain in mice and humans. Damage to these critical organs leads to the high mortality associated with such infections, and invasion across the blood-brain barrier can result in fungal meningoencephalitis. Candida albicans can penetrate a brain endothelial cell barrier in vitro through transcellular migration, but this mechanism has not been confirmed in vivo. MRI using the extracellular vascular contrast agent gadolinium diethylenetriaminepentaacetic acid demonstrated that integrity of the blood-brain barrier is lost during C. albicans invasion. Intravital two-photon laser scanning microscopy was used to provide the first real-time demonstration of C. albicans colonizing the living brain, where both yeast and filamentous forms of the pathogen were found. Furthermore, we adapted a previously described method utilizing MRI to monitor inflammatory cell recruitment into infected tissues in mice. Macrophages and other phagocytes were visualized in kidney and brain by the administration of ultrasmall iron oxide particles. In addition to obtaining new insights into the passage of C. albicans across the brain microvasculature, these imaging methods provide useful tools to study further the pathogenesis of C. albicans infections, to define the roles of Candida virulence genes in kidney versus brain infection and to assess new therapeutic measures for drug development.


Assuntos
Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/patologia , Candida albicans/fisiologia , Candidíase/patologia , Imageamento por Ressonância Magnética , Animais , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Gadolínio DTPA/administração & dosagem , Meninges/microbiologia , Meninges/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fagócitos/patologia , Reprodutibilidade dos Testes , Marcadores de Spin
15.
Stroke ; 43(9): 2430-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22811460

RESUMO

BACKGROUND AND PURPOSE: Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functional recovery after ischemic stroke. METHODS: Male rats underwent middle cerebral artery occlusion for 60 minutes followed by reperfusion for up to 14 days. Assessed parameters were: locomotor function through the Rotarod test; infarct volume through T2-weighted MRI; microvessel density through immunohistochemistry; relative cerebral blood flow through perfusion-weighted imaging; protein levels of proangiogenic factors through Western blotting; and matrix metalloproteinase-2/9 activities through gelatin zymography. RESULTS: Postischemic VPA treatment robustly improved the Rotarod performance of middle cerebral artery occlusion rats on Days 7 and 14 after ischemia and significantly reduced brain infarction on Day 14. Concurrently, VPA markedly enhanced microvessel density, facilitated endothelial cell proliferation, and increased relative cerebral blood flow in the ipsilateral cortex. The transcription factor hypoxia-inducible factor-1α and its downstream proangiogenic factors, vascular endothelial growth factor and matrix metalloproteinase-2/9, were upregulated after middle cerebral artery occlusion and significantly potentiated by VPA in the ipsilateral cortex. Acetylation of histone-H3 and H4 was robustly increased by chronic VPA treatment. The beneficial effects of VPA on Rotarod performance and microvessel density were abolished by hypoxia-inducible factor-1α inhibition. CONCLUSIONS: Chronic VPA treatment enhances angiogenesis and promotes functional recovery after brain ischemia. These effects may involve histone deacetylase inhibition and upregulation of hypoxia-inducible factor-1α and its downstream proangiogenic factors vascular endothelial growth factor and matrix metalloproteinase-2/9.


Assuntos
Anticonvulsivantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/antagonistas & inibidores , Western Blotting , Isquemia Encefálica/patologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Locomoção , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Ácido Valproico/antagonistas & inibidores
16.
Magn Reson Med ; 67(3): 801-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22006570

RESUMO

MRI using hyperpolarized (13) C-labeled pyruvate is a promising tool to biochemically profile tumors and monitor their response to therapy. This technique requires injection of pyruvate into tumor-bearing animals. Pyruvate is an endogenous entity but the influence of exogenously injected bolus doses of pyruvate on tumor microenvironment is not well understood. In this study, the effect of injecting a bolus of pyruvate on tumor oxygen status was investigated. EPR oxygen imaging revealed that the partial pressure of oxygen (pO(2)) in squamous cell carcinoma implanted in mice decreased significantly 30 min after [1-(13) C]pyruvate injection, but recovered to preinjection levels after 5 h. Dynamic contrast-enhanced-MRI studies showed that, at the dose of pyruvate used, no changes in tumor perfusion were noticed. Immunohistochemical analysis of hypoxic marker pimonidazole independently verified that the squamous cell carcinoma tumor transiently became more hypoxic by pyruvate injection. Efficacy of radiotherapy was suppressed when X-irradiation was delivered during the period of pyruvate-induced transient hypoxia. These results suggest importance of taking into account the transient decrease in tumor pO(2) after pyruvate injection in hyperpolarized (13) C MRI, because tumor oxygen status is an important factor in determining outcomes of therapies.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/metabolismo , Ácido Pirúvico/administração & dosagem , Animais , Área Sob a Curva , Isótopos de Carbono , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/radioterapia , Feminino , Imuno-Histoquímica , Camundongos
17.
BMC Neurosci ; 13: 137, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23116234

RESUMO

BACKGROUND: Spinal cord metastatic lesions affect a high number of cancer patients usually resulting in spinal cord compression syndrome. A major obstacle in the research of spinal metastatic disease is the lack of a simple reproducible animal model that mimics the natural course of the disease. In this study, we present a highly reproducible rodent model that can be used for different types of cancers while mimicking the natural course of human metastatic spinal cord compression syndrome. RESULTS: All sixteen Fisher 344 rats survived the dorsal approach intraosseous implantation of CRL-1666 adenocarcinoma cells and both rats survived the sham control surgery. By Day 13 functional analysis via the modified Basso-Beattie-Bresnahan (BBB) locomotor rating scale showed significant decrease in motor function; median functional score was 3 for the tumor group (p = 0.0011). Median time to paresis was 8.7 days post-operatively. MR imaging illustrated repeated and consistent tumor formation, furthermore, onset of neurological sequale was the result of tumor formation and cord compression as confirmed by histological examination. CONCLUSIONS: Analysis of these findings demonstrates a repeatable and consistent tumor growth model for cancer spinal metastases in rats. This novel rat model requires a less intricate surgical procedure, and as a result minimizes procedure time while subsequently increasing consistency. Therefore, this model allows for the preclinical evaluation of therapeutics for spinal metastases that more closely replicates physiological findings.


Assuntos
Adenocarcinoma/complicações , Adenocarcinoma/patologia , Transplante de Neoplasias/métodos , Compressão da Medula Espinal/etiologia , Neoplasias da Medula Espinal/complicações , Neoplasias da Medula Espinal/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Ratos , Ratos Endogâmicos F344
18.
Proc Natl Acad Sci U S A ; 106(32): 13570-5, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19628689

RESUMO

In Parkinson's disease, multiple cell types in many brain regions are afflicted. As a consequence, a therapeutic strategy that activates a general neuroprotective response may be valuable. We have previously shown that Notch ligands support neural precursor cells in vitro and in vivo. Here we show that neural precursors express the angiopoietin receptor Tie2 and that injections of angiopoietin2 activate precursors in the adult brain. Signaling downstream of Tie2 and the Notch receptor regulate blood vessel formation. In the adult brain, angiopoietin2 and the Notch ligand Dll4 activate neural precursors with opposing effects on the density of blood vessels. A model of Parkinson's disease was used to show that angiopoietin2 and Dll4 rescue injured dopamine neurons with motor behavioral improvement. A combination of growth factors with little impact on the vasculature retains the ability to stimulate neural precursors and protect dopamine neurons. The cellular and pharmacological basis of the neuroprotective effects achieved by these single treatments merits further analysis.


Assuntos
Encéfalo/patologia , Dopamina/metabolismo , Neurônios/patologia , Células-Tronco/citologia , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor TIE-2/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(42): 17898-903, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815528

RESUMO

Architectural and functional abnormalities of blood vessels are a common feature in tumors. A consequence of increased vascular permeability and concomitant aberrant blood flow is poor delivery of oxygen and drugs, which is associated with treatment resistance. In the present study, we describe a strategy to simultaneously visualize tissue oxygen concentration and microvascular permeability by using a hyperpolarized (1)H-MRI, known as Overhauser enhanced MRI (OMRI), and an oxygen-sensitive contrast agent OX63. Substantial MRI signal enhancement was induced by dynamic nuclear polarization (DNP). The DNP achieved up to a 7,000% increase in MRI signal at an OX63 concentration of 1.5 mM compared with that under thermal equilibrium state. The extent of hyperpolarization is influenced mainly by the local concentration of OX63 and inversely by the tissue oxygen level. By collecting dynamic OMRI images at different hyperpolarization levels, local oxygen concentration and microvascular permeability of OX63 can be simultaneously determined. Application of this modality to murine tumors revealed that tumor regions with high vascular permeability were spatio-temporally coincident with hypoxia. Quantitative analysis of image data from individual animals showed an inverse correlation between tumor vascular leakage and median oxygen concentration. Immunohistochemical analyses of tumor tissues obtained from the same animals after OMRI experiments demonstrated that lack of integrity in tumor blood vessels was associated with increased tumor microvascular permeability. This dual imaging technique may be useful for the longitudinal assessment of changes in tumor vascular function and oxygenation in response to chemotherapy, radiotherapy, or antiangiogenic treatment.


Assuntos
Permeabilidade Capilar , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/metabolismo , Oxigênio/metabolismo , Actinas/metabolismo , Animais , Meios de Contraste , Feminino , Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C3H , Neovascularização Patológica , Pericitos/metabolismo , Pericitos/patologia
20.
Neurodegener Dis ; 9(4): 159-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22327870

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) represent a group of common hereditary childhood neurodegenerative storage disorders that have no effective treatment. Mutations in eight different genes cause various forms of NCLs. Infantile NCL (INCL), the most lethal disease, is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. The availability of Ppt1-knockout (Ppt1-KO) mice, which recapitulate virtually all clinical and pathological features of INCL, provides an opportunity to test the effectiveness of novel therapeutic strategies in vivo. However, such studies will require noninvasive methods that can be used to perform serial evaluations of the same animal receiving an experimental therapy. Thus, the development of noninvasive method(s) of evaluation is urgently needed. Here, we report our evaluation of the progression of neurodegeneration in Ppt1-KO mice starting at 3 months of age by MRI and MR spectroscopy (MRS) and repeating these tests using the same mice at 4, 5 and 6 months of age. Our results showed progressive cerebral atrophy, which was associated with histological loss of neuronal content and increase in astroglia. Remarkably, while the brain volumes in Ppt1-KO mice progressively declined with advancing age, the MRS signals, which were significantly lower than those of their wild-type littermates, remained virtually unchanged from 3 to 6 months of age. In addition, our results also showed an abnormality in cerebral blood flow in these mice, which showed progression with age. Our findings provide methods to serially examine the brains of mouse models of neurodegenerative diseases (e.g. Ppt1-KO mice) using noninvasive and nonlethal procedures such as MRI and MRS. These methods may be useful in studies to understand the progression of neuropathology in animal models of neurodegenerative diseases as they allow repeated evaluations of the same animal in which experimental therapies are tested.


Assuntos
Progressão da Doença , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/patologia , Envelhecimento/patologia , Animais , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/genética , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/patologia , Tamanho do Órgão , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA