Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pineal Res ; 73(2): e12814, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35674448

RESUMO

Melatonin, the primary hormone involved in circadian entrainment, plays a significant role in bone physiology. This study aimed to assess the role of MEK1/2 and MEK5 in melatonin-mediated actions in mouse and human mesenchymal stem cells (MSCs) and on bone using small-molecule inhibitors and CRISPR/Cas9 knockout approaches. Consistent with in vitro studies performed in mMSCs and hMSCs, nightly (25 mg/kg, i.p., 45 days) injections with PD184352 (MEK1/2 inhibitor) or Bix02189 (MEK5 inhibitor) or SC-1-151 (MEK1/2/5 inhibitor) demonstrated that MEK1/2 and MEK5 were the primary drivers underlying melatonin's actions on bone density, microarchitecture (i.e., trabecular number, separation, and connectivity density), and bone mechanical properties (i.e., ultimate stress) through increases in osteogenic (RUNX2, BMP-2, FRA-1, OPG) expression and decreases in PPARγ. Furthermore, CRISPR/Cas9 knockout of MEK1 or MEK5 in mMSCs seeded on PLGA scaffolds and placed into critical-size calvarial defects in Balb(c) mice (male and female) revealed that treatment with melatonin (15 mg/L; p.o., nightly, 90 days) mediates sex-specific actions of MEK1 and MEK5 in new bone formation. This study is the first to demonstrate a role for MEK1/2 and MEK5 in modulating melatonin-mediated actions on bone formation in vivo and in a sex-specific manner.


Assuntos
Melatonina , Osteogênese , Animais , Fenômenos Biomecânicos , Densidade Óssea , Osso e Ossos , Feminino , Humanos , Masculino , Melatonina/farmacologia , Melatonina/fisiologia , Camundongos
2.
J Pineal Res ; 71(1): e12749, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34085304

RESUMO

Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.


Assuntos
Osso e Ossos/metabolismo , Melatonina/metabolismo , Animais , Doenças Ósseas Metabólicas/metabolismo , Osso e Ossos/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Humanos , Melatonina/farmacologia
3.
J Pineal Res ; 64(3)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29285799

RESUMO

The Melatonin Osteoporosis Prevention Study (MOPS) demonstrated that nightly melatonin resulted in a time-dependent decrease in equilibrium ratios of serum osteoclasts and osteoblasts in perimenopausal women. This study examines mechanisms related to the ratios of osteoblasts and osteoclasts using coculture models (transwell or layered) of human mesenchymal stem cell (MSC) and human peripheral blood monocytes (PBMCs). Human MSC/PBMC cocultures exposed to melatonin in osteogenic (OS+) medium for 21 days induced osteoblast differentiation and mineralization; however, only in layered cocultures did melatonin inhibit osteoclastogenesis. Melatonin effects were mediated through MT2 melatonin receptors, MEK1/2, and MEK5. In layered but not transwell cocultures, melatonin increased OPG:RANKL ratios by inhibiting RANKL, suggesting that contact with osteoclasts during osteoblastogenesis inhibits RANKL secretion. Melatonin modulated expression of ERK1/2, ERK5, ß1 integrin, GLUT4, and IRß that was dependent upon the type of coculture; however, in both cultures, melatonin increased RUNX2 and decreased PPARγ expression, indicating a role for metabolic processes that control osteogenic vs adipogenic cell fates of MSCs. Furthermore, melatonin also has osteoblast-inducing effects on human adipose-derived MSCs. In vivo, one-year nightly melatonin (15 mg/L) given to neu female mice in their drinking water increased pErk1/2, pErk5, Runx2, and Opg and Rankl levels in bone consistent with melatonin's already reported bone-enhancing effects. Finally, analysis of daily logs from the MOPS demonstrated a significant improvement in mood and perhaps sleep quality in women receiving melatonin vs placebo. The osteoblast-inducing, bone-enhancing effects of melatonin and improvement in quality of life suggest that melatonin is a safe and effective bone loss therapy.


Assuntos
Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Melatonina/farmacologia , Osteogênese/efeitos dos fármacos , Perimenopausa/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , MAP Quinase Quinase Quinases/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Qualidade de Vida , Receptor MT2 de Melatonina/metabolismo
4.
Methods Mol Biol ; 2550: 353-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180705

RESUMO

Transwell co-cultures are critical to study cell-to-cell communication through the release of factors between different cells allowing for the simultaneous assessment of treatment effects on one cell type (e.g., Cell A) and their impact on another cell type (e.g., Cell B). This allows for the simultaneous assessment of two different cell types and the factors they secrete under the same treatment conditions, which minimizes interexperimental variability, demonstrates causation rather than association, and enhances the translatability of the findings to the in vivo condition. Here we describe transwell co-cultures of human mesenchymal stem cells (MSCs) and peripheral blood monocytes or pre-osteoclasts to assess osteoblast-mediated actions on osteoclastogenesis.


Assuntos
Células-Tronco Mesenquimais , Monócitos , Diferenciação Celular , Técnicas de Cocultura , Humanos , Monócitos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese
5.
J Endocr Soc ; 4(11): bvaa115, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094207

RESUMO

CONTEXT: Melatonin may play a role in the regulation of the human menstrual cycle and may decline with menopause and/or aging. OBJECTIVE: The objective of this work is to investigate the relations between melatonin and the menstrual cycle, menopause, and aging. METHODS: This was a cross-sectional and longitudinal analysis of 20 participants from the Study of Women's Health Across the Nation (SWAN) Daily Hormone Study (DHS). The outcome measure was first-morning urine assay of 6-sulfatoxymelatonin (aMT6s), a gauge of melatonin. For each participant, aMT6s was measured daily during one premenopausal cycle with evidence of luteal activity (ELA) and one postmenopausal collection with no evidence of luteal activity (NELA). RESULTS: In addition to the organized patterns of hormone metabolites (estrone conjugates [E1c], and pregnanediol glucuronide [PdG]) and gonadotropins that characterized ovulatory menstrual cycles, there was a late luteal rise in aMT6s. In NELA collections, there was no periodicity of E1c, PdG, gonadotropins, or aMT6s. The strongest predictors of aMT6s levels were PdG values 11 to 12 days prior to aMT6s (ß = 1.46, P = .001 and ß = 1.44, P = .001, respectively). E1c and gonadotropins were not statistically significantly associated with aMT6s. Mean aMT6s in premenopause was 53.5 ng/mL, greater than the mean of 37.4 ng/mL in postmenopausal samples from the same women (P = .0002). CONCLUSIONS: This study confirms a late luteal melatonin rise, likely signaled by progesterone, which may influence menstrual cycle pacemaker control. Melatonin declined from premenopause to postmenopause. A high correlation between menopause transition stage and age precludes distinction between the influences of ovarian and chronological aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA