Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(31)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38951039

RESUMO

The release of neurotransmitters (NTs) at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Among those dedicated molecules, the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain proteins that bind soluble N-ethylmaleimide sensitive factor attachment protein receptor complexes, conferring both inhibitory and stimulatory functions. Using systematic mutagenesis and comparing reconstituted in vitro membrane fusion assays with electrophysiology in cultured neurons from mice of either sex, we deciphered the function of the N-terminus of complexin (Cpx) II. The N-terminus (amino acid 1-27) starts with a region enriched in hydrophobic amino acids (1-12), which binds lipids. Mutants maintaining this hydrophobic character retained the stimulatory function of Cpx, whereas exchanges introducing charged residues perturbed both spontaneous and evoked exocytosis. Mutants in the more distal region of the N-terminal domain (amino acid 11-18) showed a spectrum of effects. On the one hand, mutation of residue A12 increased spontaneous release without affecting evoked release. On the other hand, replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release but also impaired evoked release. Most surprising, this substitution reduced the size of the readily releasable pool, a novel function for Cpx at mammalian synapses. Thus, the exact amino acid composition of the Cpx N-terminus fine-tunes the degree of spontaneous and evoked NT release.


Assuntos
Proteínas do Tecido Nervoso , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/genética , Camundongos , Masculino , Feminino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Mutação , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Fusão de Membrana/fisiologia , Fusão de Membrana/genética , Células Cultivadas , Fenótipo , Neurônios/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Camundongos Endogâmicos C57BL , Exocitose/fisiologia , Exocitose/genética
2.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411501

RESUMO

SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.


Neurons in the brain communicate with one another by passing molecules called neurotransmitters across the synapse connecting them together. Mutations in the machinery that controls neurotransmitter release can lead to epilepsy or developmental delays in early childhood, but how exactly is poorly understood. Neurotransmitter release is primarily controlled by three proteins that join together to form the SNARE complex, and another protein called synaptotagmin-1. This assembly of proteins primes vesicles containing neurotransmitter molecules to be released from the neuron. When calcium ions bind to synaptotagmin-1, this triggers vesicles in this readily releasable pool to then fuse with the cell membrane and secrete their contents into the small gap between the communicating neurons. Mutations associated with epilepsy and developmental delays have been found in all components of this release machinery. Here, Kádková, Murach, Østergaard et al. set out to find how three of these mutations, which are found in a protein in the SNARE complex called SNAP25, lead to aberrant neurotransmitter release. Two of these mutations are located in the interface between the SNARE complex and synaptotagmin-1, while the other is found within the bundle of proteins that make up the SNARE complex. In vitro and ex vivo experiments in mice revealed that the two interface mutations led to defects in vesicle priming, while at the same time bypassing the control by synaptotagmin-1, resulting in vesicles spontaneously fusing with the cell membrane in an unregulated manner. These mutations therefore combine loss-of-function and gain-of-function features. In contrast, the bundle mutation did not impact the number of vesicles in the releasable pool but reduced spontaneous and calcium ion evoked vesicle fusion. This was due to the mutation destabilizing the SNARE complex, which reduced the amount of energy available for merging vesicles to the membrane. These findings reveal how SNAP25 mutations can have different effects on synapse activity, and how these defects disrupt the release of neurotransmitters. This experimental framework could be used to study how other synaptic mutations lead to diseases such as epilepsy. Applying this approach to human neurons and live model organisms may lead to the discovery of new therapeutic targets for epilepsy and delayed development.


Assuntos
Fusão de Membrana , Transmissão Sináptica , Animais , Camundongos , Exocitose , Mutação , Proteínas SNARE/genética
3.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260673

RESUMO

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain SNARE complex binding proteins which confer both inhibitory and stimulatory functions. Using systematic mutagenesis and combining reconstituted in vitro membrane fusion assays with electrophysiology in neurons, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which can lead to lipid binding. In contrast to mutants which maintain the hydrophobic character and the stimulatory function of Cpx, non-conservative exchanges largely perturbed spontaneous and evoked exocytosis. Mutants in the downstream region (amino acid 11-18) show differential effects. Cpx-A12W increased spontaneous release without affecting evoked release whereas replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release and surprisingly reduced the size of the readily releasable pool, a novel Cpx function, unanticipated from previous studies. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release. Significance Statement: We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We show using a combination of biochemical, imaging and electrophysiological techniques that the binding of the proximal region of complexin (amino acids 1-10) to lipids is crucial for spontaneous synaptic vesicular release. Furthermore, we identify a single amino acid at position D15 which is structurally important since it not only is involved in spontaneous release but, when mutated, also decreases drastically the readily releasable pool, a function that was never attributed to complexin.

4.
Drug Test Anal ; 9(5): 721-733, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27400642

RESUMO

The Internet is flooded with steadily changing synthetic cannabinoids in `Spice` products. In routine forensic work, it is difficult to keep the analytical methods for the detection of these analytes up to date. We describe a liquid chromatography-tandem mass spectrometry method after liquid-liquid extraction for the detection of 93 synthetic cannabinoids in human serum. The method was validated for selectivity and specificity, matrix effects, and analytical limits (<1 ng/mL for 81 substances) for qualitative analysis. A short quantitative validation regarding linearity and precision data was also conducted. The method was applied to 189 serum samples provided by police authorities. Sixty-four samples (33.8%) were found positive for at least one synthetic cannabinoid, whereby MDMB-CHMICA, AB-CHMINACA, and 5 F-PB-22 were the substances most frequently detected. Consumption of these substances and plasma concentrations are linked to symptoms documented by the police. Six case reports are presented. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Canabinoides/sangue , Drogas Ilícitas/sangue , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Medicina Legal/métodos , Humanos , Indazóis/sangue , Indóis/sangue , Limite de Detecção , Masculino , Estudos Retrospectivos , Espectrometria de Massas por Ionização por Electrospray/métodos , Valina/análogos & derivados , Valina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA