Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 16(4): 467-473, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27941808

RESUMO

Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-µSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.

3.
Phys Rev Lett ; 119(22): 226601, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286821

RESUMO

We have measured excess carrier lifetime in silicon using photoexcited muon spin spectroscopy. Positive muons implanted deep in a wafer can interact with the optically injected excess carriers and directly probe the bulk carrier lifetime while minimizing the effect from surface recombination. The method is based on the relaxation rate of muon spin asymmetry, which depends on the excess carrier density. The underlying microscopic mechanism has been understood by simulating the four-state muonium model in Si under illumination. We apply the technique to different injection levels and temperatures, and demonstrate its ability for injection- and temperature-dependent lifetime spectroscopy.

4.
Rev Sci Instrum ; 87(12): 125111, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040964

RESUMO

A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA