Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002541

RESUMO

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Assuntos
Anafilaxia , Fibroblastos , Lisofosfolipídeos , Mastócitos , Camundongos Knockout , Comunicação Parácrina , Diester Fosfórico Hidrolases , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Animais , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Camundongos , Fibroblastos/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciação Celular , Camundongos Endogâmicos C57BL , Proteína 1 Semelhante a Receptor de Interleucina-1 , Lipocalinas
2.
FASEB J ; 38(2): e23428, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236184

RESUMO

Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.


Assuntos
Asma , Eosinofilia , Fosfolipases A2 Secretórias , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Lisofosfolipídeos , Fosfolipases A2 Secretórias/genética , Citocinas
3.
Gan To Kagaku Ryoho ; 50(13): 1762-1764, 2023 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-38303199

RESUMO

In recent years, an increasing number of reports have demonstrated the usefulness of neoadjuvant chemoradiotherapy (NACRT). In our department, we consider cT3-4 and/or cN-positive locally advanced rectal cancer as an indication for NACRT. We have retrospectively evaluated the efficacy and safety of NACRT in 11 patients who underwent NACRT from November 2018 to July 2022. All patients were male, with a median age of 69 years, and cStage was Ⅱa: 1, Ⅱc: 1, Ⅲb: 5, Ⅲc: 3, and Ⅳa: 1. All patients completed NACRT, and there were no cases of CTCAE Grade 3 or higher adverse events or treatment interruptions. The response rate was 72.7%, and histological response grade were Grade 3: 1(9.1%), 2: 4 (36.4%), 1b: 6(54.5%), and surgical margin was negative in all cases. Pathological down stage was obtained in 45.5% of cases, and pCR was obtained in 1 case(9.1%). The median observation period was 17 months, and during the period, 2 cases(18.2%)developed recurrence, both of which were pulmonary metastases, and no local recurrence including pelvic lymph node recurrence was observed. NACRT for locally advanced rectal cancer is considered a relatively safe and highly locally controllable preoperative treatment.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Masculino , Idoso , Feminino , Terapia Neoadjuvante/efeitos adversos , Resultado do Tratamento , Quimiorradioterapia/efeitos adversos , Estudos Retrospectivos , Neoplasias Retais/tratamento farmacológico , Estadiamento de Neoplasias
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159536, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032626

RESUMO

Extracellular vesicles (EVs) represent small vesicles secreted from cells, including exosomes (40-150 nm in diameter), which are released via the multivesicular endosomal pathway, and microvesicles and ectosomes (100-1000 nm), which are produced by plasma membrane budding. Broadly, EVs also include vesicles generated from dying cells, such as apoptotic bodies (5-10 µm), as well as exomeres (< 50 nm), which are very small, non-membranous nanoparticles. EVs play important roles in cell-to-cell signaling in various aspects of cancer, immunity, metabolism, and so on by transferring proteins, microRNAs (miRNAs), and metabolites as cargos from donor cells to recipient cells. Although lipids are one of the major components of EVs, they have long been recognized as merely the "wall" that partitions the lumen of the vesicle from the outside. However, it has recently become obvious that lipid composition of EVs influences their properties and functions, that EVs act as a carrier of a variety of lipid mediators, and that lipid mediators are produced in EV membranes by the hydrolytic action of secreted phospholipase A2s (sPLA2s). In this article, we will make an overview of the roles of lipids in EVs, with a particular focus on sPLA2-driven mobilization of lipid mediators from EVs and its biological significance.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Hidrólise , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/genética , Animais , Exossomos/metabolismo
5.
Front Immunol ; 15: 1409458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015572

RESUMO

Current treatments of eosinophilic chronic rhinosinusitis (ECRS) involve corticosteroids with various adverse effects and costly therapies such as dupilumab, highlighting the need for improved treatments. However, because of the lack of a proper mouse ECRS model that recapitulates human ECRS, molecular mechanisms underlying this disease are incompletely understood. ECRS is often associated with aspirin-induced asthma, suggesting that dysregulation of lipid mediators in the nasal mucosa may underlie ECRS pathology. We herein found that the expression of microsomal PGE synthase-1 (encoded by PTGES) was significantly lower in the nasal mucosa of ECRS patients than that of non-ECRS subjects. Histological, transcriptional, and lipidomics analyses of Ptges-deficient mice revealed that defective PGE2 biosynthesis facilitated eosinophil recruitment into the nasal mucosa, elevated expression of type-2 cytokines and chemokines, and increased pro-allergic and decreased anti-allergic lipid mediators following challenges with Aspergillus protease and ovalbumin. A nasal spray containing agonists for the PGE2 receptor EP2 or EP4, including omidenepag isopropyl that has been clinically used for treatment of glaucoma, markedly reduced intranasal eosinophil infiltration in Ptges-deficient mice. These results suggest that the present model using Ptges-deficient mice is more relevant to human ECRS than are previously reported models and that eosinophilic inflammation in the nasal mucosa can be efficiently blocked by activation of the PGE2-EP2 pathway. Furthermore, our findings suggest that drug repositioning of omidenepag isopropyl may be useful for treatment of patients with ECRS.


Assuntos
Dinoprostona , Eosinofilia , Camundongos Knockout , Mucosa Nasal , Receptores de Prostaglandina E Subtipo EP2 , Rinite , Sinusite , Animais , Sinusite/tratamento farmacológico , Sinusite/metabolismo , Sinusite/imunologia , Humanos , Camundongos , Rinite/tratamento farmacológico , Rinite/metabolismo , Rinite/imunologia , Dinoprostona/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/imunologia , Mucosa Nasal/efeitos dos fármacos , Eosinofilia/tratamento farmacológico , Eosinofilia/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Modelos Animais de Doenças , Masculino , Transdução de Sinais/efeitos dos fármacos , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/efeitos dos fármacos , Feminino , Doença Crônica , Camundongos Endogâmicos C57BL , Rinossinusite
7.
Cell Death Discov ; 10(1): 221, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719806

RESUMO

Lipid-mediated inflammation is involved in the development and malignancy of cancer. We previously demonstrated the existence of a novel oncogenic mechanism utilizing membrane lipids of extracellular vesicles in Epstein-Barr virus (EBV)-positive lymphomas and found that the lipid composition of lymphoma cells is skewed toward ω-3 fatty acids, which are anti-inflammatory lipids, suggesting an alteration in systemic lipid composition. The results showed that arachidonic acid (AA), an inflammatory lipid, was significantly reduced in the infected cells but detected at high levels in the sera of EBV-positive patients lead to the finding of the blockade of extracellular AA influx by downregulating FATP2, a long-chain fatty acid transporter that mainly transports AA in EBV-infected lymphoma cells. Low AA levels in tumor cells induced by downregulation of FATP2 expression confer resistance to ferroptosis and support tumor growth. TCGA data analysis and xenograft models have demonstrated that the axis plays a critical role in several types of cancers, especially poor prognostic cancers, such as glioblastoma and melanoma. Overall, our in vitro, in vivo, in silico, and clinical data suggest that several cancers exert oncogenic activity by maintaining their special lipid composition via extracellular blockade.

8.
Front Immunol ; 14: 1251784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259495

RESUMO

Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.


Assuntos
Macrófagos , Músculo Esquelético , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fosfolipídeos , Regeneração , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA