Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 608(7923): 578-585, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922512

RESUMO

Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.


Assuntos
Córtex Visual , Vias Visuais , Animais , Mapeamento Encefálico , Camundongos , Modelos Neurológicos , Retina/citologia , Retina/fisiologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia
2.
J Am Chem Soc ; 143(29): 10853-10859, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34197100

RESUMO

In recent years, London dispersion interactions, which are the attractive component of the van der Waals potential, have been found to play an important role in controlling the regio- and/or stereoselectivity of various reactions. Particularly, the dispersion interactions between substrates and catalysts (or ligands) are dominant in various selective catalyzes. In contrast, repulsive steric interactions, rather than the attractive dispersion interactions, between bulky substituents are predominant in most of the noncatalytic reactions. Herein, we demonstrate the first example of London dispersion-controlled noncatalytic (2 + 2) cyclodimerization of substituted benzynes to selectively afford proximal biphenylenes in high yields and regioselectivities, depending on the extent of dispersion interactions in the substituents. This method can be applied for the synthesis of novel helical biphenylenes, which would be fascinating for chemists as these compounds are potential skeletons for ligands, catalysts, and medicines.

3.
Cereb Cortex ; 29(4): 1496-1508, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522092

RESUMO

Resting-state functional connectivity (FC) has become a major functional magnetic resonance imaging method to study network organization of human brains. There has been recent interest in the temporal fluctuations of FC calculated using short time windows ("dynamic FC") because this method could provide information inaccessible with conventional "static" FC, which is typically calculated using the entire scan lasting several tens of minutes. Although multiple studies have revealed considerable temporal fluctuations in FC, it is still unclear whether the fluctuations of FC measured in hemodynamics reflect the dynamics of underlying neural activity. We addressed this question using simultaneous imaging of neuronal calcium and hemodynamic signals in mice and found coordinated temporal dynamics of calcium FC and hemodynamic FC measured in the same short time windows. Moreover, we found that variation in transient neuronal coactivation patterns was significantly related to temporal fluctuations of sliding window FC in hemodynamics. Finally, we show that the observed dynamics of FC cannot be fully accounted for by simulated data assuming stationary FC. These results provide evidence for the neuronal origin of dynamic FC and further suggest that information relevant to FC is condensed in temporally sparse events that can be extracted using a small number of time points.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Acoplamento Neurovascular/fisiologia , Animais , Mapeamento Encefálico/métodos , Sinalização do Cálcio , Hemodinâmica , Camundongos Transgênicos , Imagem Óptica , Processamento de Sinais Assistido por Computador
4.
Proc Natl Acad Sci U S A ; 113(23): 6556-61, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27185944

RESUMO

Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoS-based FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different types of large-scale spontaneous neuronal activity-namely, global waves propagating across the neocortex and transient coactivations among cortical areas sharing high FC. Different sets of cortical areas, sharing high FC within each set, were coactivated at different timings of the propagating global waves, suggesting that spatial information of cortical network characterized by FC was embedded in the phase of the global waves. Furthermore, we confirmed that such transient coactivations in CaS were indeed converted into spatially similar coactivations in HemoS and were necessary to sustain the spatial structure of Hemo-FC. These results explain how global waves of spontaneous neuronal activity propagating across large-scale cortical network contribute to Hemo-FC in the resting state.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Sinalização do Cálcio , Hemodinâmica , Humanos , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Rede Nervosa/fisiologia
5.
J Neurosci ; 37(39): 9424-9437, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28847805

RESUMO

Recent studies suggest that higher visual areas (HVAs) in the mouse visual cortex are segregated anatomically into two visual streams, likely analogous to the ventral and dorsal streams in primates. However, HVAs in mice have yet to be characterized functionally. Moreover, it is unknown when the functional segregation of HVAs occurs during development. Here, we investigated spatiotemporal selectivity of HVAs and their development using wide-field calcium imaging. We found that lateral HVAs in the anatomical ventral stream shared similar spatiotemporal selectivity, whereas the spatiotemporal selectivity of anterior and medial HVAs in the anatomical dorsal stream was not uniform and these areas were segregated functionally into multiple groups. This functional segregation of HVAs developed and reached an adult-like pattern ∼10 d after eye opening (EO). These results suggest, not only the functional segregation of ventral and dorsal streams, but also the presence of multiple substreams in the dorsal stream, and indicate that the functional segregation of visual streams occurs gradually after EO.SIGNIFICANCE STATEMENT Investigation of the spatiotemporal selectivity of nine higher visual areas (HVAs) in adult and developing mice revealed that lateral HVAs belonging to the putative ventral stream shared similar spatiotemporal selectivity, whereas the spatiotemporal selectivity of anterior and medial HVAs belonging to the putative dorsal stream was not uniform and these areas were segregated functionally into multiple groups. These results suggest the presence of multiple substreams within the putative dorsal stream for visuospatial processing. Furthermore, we found that initially immature functional segregation among HVAs developed to an adult-like pattern ∼10 d after eye opening. These results provide a foundation for using mouse HVAs as a model to understand parallel processing and its developmental mechanism.


Assuntos
Sinalização do Cálcio , Córtex Visual/crescimento & desenvolvimento , Animais , Camundongos , Córtex Visual/metabolismo , Córtex Visual/fisiologia
6.
Front Neural Circuits ; 17: 1155195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139079

RESUMO

External sensory inputs propagate from lower-order to higher-order brain areas, and the hierarchical neural network supporting this information flow is a fundamental structure of the mammalian brain. In the visual system, multiple hierarchical pathways process different features of the visual information in parallel. The brain can form this hierarchical structure during development with few individual differences. A complete understanding of this formation mechanism is one of the major goals of neuroscience. For this purpose, it is necessary to clarify the anatomical formation process of connections between individual brain regions and to elucidate the molecular and activity-dependent mechanisms that instruct these connections in each areal pair. Over the years, researchers have unveiled developmental mechanisms of the lower-order pathway from the retina to the primary visual cortex. The anatomical formation of the entire visual network from the retina to the higher visual cortex has recently been clarified, and higher-order thalamic nuclei are gaining attention as key players in this process. In this review, we summarize the network formation process in the mouse visual system, focusing on projections from the thalamic nuclei to the primary and higher visual cortices, which are formed during the early stages of development. Then, we discuss how spontaneous retinal activity that propagates through thalamocortical pathways is essential for the formation of corticocortical connections. Finally, we discuss the possible role of higher-order thalamocortical projections as template structures in the functional maturation of visual pathways that process different visual features in parallel.


Assuntos
Núcleos Talâmicos , Córtex Visual , Animais , Camundongos , Vias Visuais , Vias Neurais , Tálamo , Mamíferos
7.
Aging Cell ; 22(9): e13925, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37476844

RESUMO

Neurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice. Nuclear infolding was observed within 10 min of stimulation in young nuclei, while the aged nuclei were already infolded pre-stimulation and showed reduced dynamics of the morphology. In young nuclei, the depletion of the stimuli restored the nucleus to a spherical shape and reduced the dynamic behavior, suggesting that nuclear infolding is a reversible process. We also found the aged nucleus to be stiffer than the young one, further relating to the age-associated loss of nuclear shape dynamics. We reveal temporal changes in the nuclear shape upon external stimulation and observe that these morphological dynamics decrease with age.


Assuntos
Neurônios , Córtex Visual , Camundongos , Animais , Córtex Visual/fisiologia
8.
Cell Rep ; 26(5): 1082-1088.e3, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699339

RESUMO

Finding the relationship between individual cognitive functions and cell-type-specific neuronal circuits is a central topic in neuroscience. In cats, the lateral geniculate nucleus (LGN) contains several cell types carrying spatially and temporally precise visual information. Whereas LGN cell types lack selectivity for motion direction, neurons in the primary visual cortex (area 17) exhibit sharp direction selectivity. Whether and how such de novo formation of direction selectivity depends on LGN cell types remains unknown. Here, we addressed this question using in vivo two-photon calcium imaging in cat area 17, which consists of two compartments receiving different combinations of inputs from the LGN cell types. The direction map in area 17 showed unique fragmented organization and was present only in small and distributed cortical domains. Moreover, direction-selective domains preferentially localized in specific compartments receiving Y and W inputs carrying low spatial frequency visual information, indicating that cell-type-specific thalamocortical projections constrain the formation of direction selectivity.


Assuntos
Mapeamento Encefálico , Tálamo/fisiologia , Córtex Visual/fisiologia , Animais , Cálcio/metabolismo , Gatos , Feminino , Masculino , Especificidade de Órgãos , Fótons
9.
Commun Integr Biol ; 11(4): e1528821, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534348

RESUMO

Resting-state functional connectivity (FC), which measures the temporal correlation of spontaneous hemodynamic activity between distant brain areas, is a widely accepted method in functional magnetic resonance imaging (fMRI) to assess the connectome of healthy and diseased human brains. A common assumption underlying FC is that it reflects the temporal structure of large-scale neuronal activity that is converted into large-scale hemodynamic activity. However, direct observation of such relationship has been difficult. In this commentary, we describe our recent progress regarding this topic. Recently, transgenic mice that express a genetically encoded calcium indicator (GCaMP) in neocortical neurons are enabling the optical recording of neuronal activity in large-scale with high spatiotemporal resolution. Using these mice, we devised a method to simultaneously monitor neuronal and hemodynamic activity and addressed some key issues related to the neuronal basis of FC. We propose that many important questions about human resting-state fMRI can be answered using GCaMP expressing transgenic mice as a model system.

10.
Front Mol Neurosci ; 8: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106292

RESUMO

Due to recent advances of genetic manipulation, mouse brain has become a useful model for studying brain function, which demands whole brain functional mapping techniques in the mouse brain. In the present study, to finely map visual responsive areas in the mouse brain, we combined high-resolution wide-field optical imaging with transgenic mice containing the genetically encoded Ca(2+) indicator, GCaMP3. With the high signal amplitude of GCaMP3 expressing in excitatory neurons, this system allowed neural activity to be observed with relatively fine spatial resolution and cell-type specificity. To evaluate this system, we examined whether non-visual areas exhibited a visual response over the entire surface of the mouse hemisphere. We found that two association areas, the retrosplenial area (RS) and secondary motor/anterior cingulate area (M2/AC), were significantly responsive to drifting gratings. Examination using gratings with distinct spatiotemporal frequency parameters revealed that the RS strongly responded to high-spatial and low-temporal frequency gratings. The M2/AC exhibited a response property similar to that of the RS, though it was not statistically significant. Finally, we performed cellular imaging using two-photon microscopy to examine orientation and direction selectivity of individual neurons, and found that a minority of neurons in the RS clearly showed visual responses sharply selective for orientation and direction. These results suggest that neurons in RS encode visual information of fine spatial details in images. Thus, the present study shows the usefulness of the functional mapping method using a combination of wide-field and two-photon Ca(2+) imaging, which allows for whole brain mapping with high spatiotemporal resolution and cell-type specificity.

11.
Nat Neurosci ; 18(12): 1780-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26523644

RESUMO

Neuronal activity is important for the functional refinement of neuronal circuits in the early visual system. At the level of the cerebral cortex, however, it is still unknown whether the formation of fundamental functions such as orientation selectivity depends on neuronal activity, as it has been difficult to suppress activity throughout development. Using genetic silencing of cortical activity starting before the formation of orientation selectivity, we found that the orientation selectivity of neurons in the mouse visual cortex formed and matured normally despite a strong suppression of both spontaneous and visually evoked activity throughout development. After the orientation selectivity formed, the distribution of the preferred orientations of neurons was reorganized. We found that this process required spontaneous activity, but not visually evoked activity. Thus, the initial formation and maturation of orientation selectivity is largely independent of neuronal activity, and the initial selectivity is subsequently modified depending on neuronal activity.


Assuntos
Neurônios/fisiologia , Orientação/fisiologia , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Percepção Visual/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Gravidez , Córtex Visual/citologia , Vias Visuais/citologia
12.
Neuron ; 75(1): 65-72, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22794261

RESUMO

Neurons in rodent visual cortex are organized in a salt-and-pepper fashion for orientation selectivity, but it is still unknown how this functional architecture develops. A recent study reported that the progeny of single cortical progenitor cells are preferentially connected in the postnatal cortex. If these neurons acquire similar selectivity through their connections, a salt-and-pepper organization may be generated, because neurons derived from different progenitors are intermingled in rodents. Here we investigated whether clonally related cells have similar preferred orientation by using a transgenic mouse, which labels all the progeny of single cortical progenitor cells. We found that preferred orientations of clonally related cells are similar to each other, suggesting that cell lineage is involved in the development of response selectivity of neurons in the cortex. However, not all clonally related cells share response selectivity, suggesting that cell lineage is not the only determinant of response selectivity.


Assuntos
Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Células Clonais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA