RESUMO
BACKGROUND AND OBJECTIVE: Connective tissue growth factor (CCN2/CTGF) plays an important role in wound healing and regulation of the extracellular matrix in periodontal tissue. However, the functional relationship between altered transforming growth factor-beta1 levels and CCN2/CTGF has not been extensively investigated in human gingival fibroblasts and periodontal ligament cells. This study investigated the effects of transforming growth factor-beta1 on the expression of the CCN2/CTGF gene in human gingival fibroblasts and periodontal ligament cells in vitro. MATERIAL AND METHODS: Cells were isolated from normal periodontal tissues and cultured in Dulbecco's modified Eagle's minimal essential medium/F12 containing 10% fetal bovine serum. Subconfluent cells were maintained under serum deprivation for 24 h then treated with Dulbecco's modified Eagle's minimal essential medium/F12 containing 0.5% fetal bovine serum (control) and 0.1, 1, 5 or 10 ng/mL of transforming growth factor-beta1 for 24, 48 or 72 h. The effects of transforming growth factor-beta1 on CCN2/CTGF mRNA expression were measured by reverse transcription-polymerase chain reaction. CCN2/CTGF protein was quantitatively analyzed using enzyme-liked immunosorbent assay. Subcellular distribution of CCN2/CTGF protein in both human gingival fibroblasts and periodontal ligament cells was observed using immunofluorescence microscopy. RESULTS: In both human gingival fibroblasts and periodontal ligament cells, the expression of CCN2/CTGF mRNA and CCN2/CTGF protein was significantly increased, in a dose- and time-dependent manner, in the presence of transforming growth factor-beta1. Moreover, immunofluorescence analysis indicated that immunoreactivity to CCN2/CTGF showed a granular pattern of protein localization. CONCLUSION: The expression of CCN2/CTGF mRNA and protein was induced by transforming growth factor-beta1 in human gingival fibroblasts and periodontal ligament cells. These results suggest that CCN2/CTGF plays an important role in wound healing and in the regeneration of periodontal tissue.
Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Gengiva/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Regeneração/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Adulto , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Gengiva/citologia , Humanos , Ligamento Periodontal/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cicatrização/fisiologia , Adulto JovemRESUMO
Since fibrosis is observed in smokers' gingiva, it was hypothesized that fibrosis was caused by nicotine in the periodontium. Therefore, in this study, we investigated the effects of nicotine on the induction of a profibrotic molecule, connective tissue growth factor (CCN2/CTGF), in human gingival fibroblasts (HGFs) and periodontal ligament (PDL) cells. With 1 microg/mL nicotine, vacuolization and attenuated proliferation were observed. Interestingly, 1 microg/mL nicotine increased the production of CCN2/CTGF protein in both cells without increasing mRNA expression. Furthermore, type I collagen mRNA and protein were also increased and were significantly blocked by a CCN2/CTGF neutralizing antibody. This is the first report to describe a relationship between nicotine and CCN2/CTGF in periodontal tissue cells. Analysis of our data also indicated that nicotine was cytotoxic, while it increased CCN2/CTGF and, eventually, type I collagen production. These findings suggest that periodontal fibrosis can be promoted by nicotine from smoking via effects on CCN2/CTGF.