Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(30): 10475-10484, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463335

RESUMO

To integrate surface and interfacial properties and phenomena into the Hansen solubility parameter (HSP) framework, we propose an equation for estimating both surface tension/energy for liquids and solids as well as interfacial tension/energy. The contact angles of probe liquids on various polymers estimated using the proposed equation based on bulk HSPs (derived from bulk properties such as solubility or swelling, and not on surface properties) are compared with those measured using the sessile drop method. It is found that their correlations are sufficient for predicting wettability in practical use. All the respective tension and energy correlations are reasonably good, confirming the predictive power of the proposed equation for all values of liquid surface tension, solid surface energy, and interfacial tension. The unification of surface and interfacial properties and phenomena with HSPs (derived from bulk properties) enables us to estimate the surface properties from bulk properties and vice versa. The huge database of HSPs is now applicable to not only bulk phenomena but also surface and interfacial phenomena. Furthermore, complex processes or systems composed of multiple constituents and phases can be understood and designed using the modified HSP framework.

2.
Langmuir ; 37(21): 6397-6405, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34002607

RESUMO

Laser desorption/ionization mass spectrometry (LDI-MS) assisted by solid substrates is useful for the facile and rapid analysis of low-molecular-weight compounds. The LDI performance of solid substrates depends on not only a surface morphology but also the surface functionalities dominating the surface-analyte interactions. In this study, we propose a hybrid surface design for LDI substrates, realizing both weak surface-analyte interaction and homogeneous distribution of analytes. The hybrid surface consisted of a mixture of fluoroalkylsilane (FAS), SiO2, and TiO2 and was formed on organosilica substrates containing UV-laser-absorbing naphthalimide moieties. To investigate the surface interactions, the hybrid surface as well as conventional hydrophobic surfaces treated with FAS only were prepared on flat organosilica films. Contact angle measurements and surface free energy analysis showed that the hybrid surface exhibited the highest hydrophobicity, while the contribution of the polar and hydrogen bonding terms in the surface free energy was clearly observed. The organosilica film with the hybrid surface demonstrated significant LDI performance for the detection of biorelated compounds (e.g., peptides, phospholipids, and medicines), and a high detection ability was particularly observed for peptides. The substrate surface promoted the desorption/ionization of analytes through a low surface free energy and uniform distribution of the analytes due to the interactive sites. The hybrid surface design was then applied to a nanostructured organosilica substrate consisting of a base film and a nanoparticle layer. The signal intensity of a peptide was further improved approximately 3-fold owing to the increased surface area of the nanostructured substrate, and the limit of detection reached the subfemtomole order. Our hybrid surface design is expected to improve the LDI performance of various nanostructured solid substrates.

3.
Analyst ; 146(11): 3454-3462, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075923

RESUMO

The present paper reports on the use of TiN nanopillars as a robust analytical substrate for laser desorption/ionization mass spectrometry (LDI-MS). TiN nanopillars were fabricated on silicon wafers through the dynamic oblique deposition of titanium, followed by thermal treatment in an ammonia atmosphere. The TiN nanopillars were readily applicable to a simple "dried-droplet" method in the LDI-MS without surface modification or pre-treatment. A broad range of analytes were investigated, including a small drug molecule, a synthetic polymer, sugars, peptides, and proteins. Intact molecular signals were detected with low noise interference and no fragmentation. The developed TiN-nanopillar-based approach extends the applicable mass limit to 150 kDa (immunoglobulin G) and was able to detect trypsinogen (24 kDa) at levels as low as 50 fmol µL-1 with adequate shot-to-shot signal reproducibility. In addition, we carried out MS analysis on biomolecule-spiked human blood plasma and a mixture of standard samples to investigate the promise of the TiN nanopillars for clinical research. The experimental observations are validated using electromagnetic and heat-transfer simulations. The TiN nanopillars show a reduced reflection and exhibit surges in the TiN surface temperature upon irradiation with electromagnetic radiation. Localization of thermal energy at the tips of the TiN pillars is likely to be responsible for the superior LDI performance. Our results suggest that the development of nanostructured TiN substrates will contribute to the widespread implementation of nanostructured solid substrates for biomedical and clinical applications with simple processes.

4.
Langmuir ; 36(9): 2247-2254, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32097019

RESUMO

On the basis of Hansen solubility parameters (HSP), we investigated octamethylsilsesquioxane (OMS), a siloxane compound with a cage-like structure and methyl side chains, as an omniphobic substance. The HSP of OMS were determined through dissolution tests to be similar to those of polytetrafluoroethylene (PTFE), leading to the prediction that films comprising OMS should possess liquid-repellency comparable to films comprising PTFE. Indeed, an electroless-plated Ni-P film composite with OMS particles (Ni-P/OMS film) exhibited liquid-repellency comparable to or higher than that of the Ni-P film composite with PTFE particles, except toward 1-bromonaphthalene, which has a low surface free energy. Moreover, the hydrophilic influence of the Ni-P matrix was eliminated by the use of polydimethylsiloxane (PDMS) as the matrix instead of Ni-P, resulting in enhanced liquid-repellency and water-sliding behavior of the solution-sprayed PDMS film composite with the OMS particles (PDMS/OMS film). These films comprising OMS particles are promising candidates for nonfluorinated liquid-repellent films.

5.
ACS Appl Mater Interfaces ; 16(20): 26653-26663, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722796

RESUMO

Materials for heat sinks in automotive heat dissipation systems must demonstrate both high thermal conductivity and stress resistance during assembly. This research proposes a composite material, comprised of thermally conductive ceramic fillers and matrix resins, as a suitable option for such application. The strategy for designing this material interface is directed with Hansen solubility parameters (HSP). A composite material featuring a honeycomb-like structure made of poly(methyl methacrylate) (PMMA) and boron nitride (BN) particles was successfully fabricated through press molding. This yielded a continuous BN network exhibiting high thermal conductivity and moderate mechanical strength. The HSP evaluation led to the suggestion of introducing highly polar functional groups into the matrix resin to enhance the affinity between PMMA resin and BN fillers. In line with this recommendation, a nitrile (CN) group─a highly polar group─was introduced to PMMA (CN-PMMA), significantly enhancing the composite's maximum bending stress without noticeably degrading other properties. Surface HSP evaluation through contact angle measurements revealed an "interface enrichment effect", with the CN groups concentrating at the resin-filler interface and effectively interacting with the surface functional groups on the BN particles, which resulted in an increase in the maximum bending stress. These findings emphasize the advantage of employing HSP methodologies in designing high-performance composite materials.

6.
J Agric Food Chem ; 71(12): 5006-5015, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36896812

RESUMO

Simple and rapid screening of agrochemicals greatly contributes to food and environmental safety. Matrix-free laser desorption/ionization mass spectrometry (LDI-MS) is an effective tool for high-throughput analysis of low-molecular-weight compounds. In this study, we report a UV-laser-absorbing organosilica film for the sensitive detection of various sulfonylurea herbicides using LDI-MS. Organosilica films with fluoroalkyl groups on the organic part are fabricated, followed by additional modification of the silica moiety with a fluoroalkyl coupling agent to cover the film surface with hydrophobic fluoroalkyl groups. Nanoimprinting is conducted to impart nanostructures on the film surface to enhance the LDI performance. The fabricated nanostructured organosilica films accomplish sensitive detection of cyclosulfamuron and azimsulfuron at concentrations as low as 1 fmol µL-1. The applicability of the nanostructured organosilica films is confirmed by the recovery of cyclosulfamuron and ethametsulfuron-methyl from pea sprouts (Pisum sativum) hydroponically grown in herbicide-spiked water at concentrations of 0.5 ppm.


Assuntos
Fluorocarbonos , Nanoestruturas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria , Nanoestruturas/química , Lasers
7.
ChemSusChem ; 16(20): e202300679, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474453

RESUMO

Metal complexes inspired by carbonic anhydrase (CA), which is a metalloenzyme containing Zn(II), have been investigated as alternatives for CO2 fixation systems operating under ambient temperature and pressure conditions. In this study, we designed a trinuclear Zn(II) cryptate complex (Zn3 L) and demonstrated rapid CO2 fixation with carbonation of CO2 using Zn3 L. The CO2 fixation performance of Zn3 L surpassed that of a standard CO2 absorbent, KOH(aq) solution, under conditions of the same solute concentration. In addition, the reaction achieved operation without support addition of base, which has been often required in systems of CA-inspired complexes. Fixed CO2 was released by protonating polyazacryptate ligand (L) and breaking the complex structure, and deprotonation of L induced the reconstruction of Zn3 L, allowing it to refix CO2 . This reaction mechanism was proposed based on the analysis of operando extended X-ray absorption fine structure spectroscopy. Zn3 L also demonstrated the ability to capture dilute CO2 from air, and the volume of CO2 captured by Zn3 L was approximately 2.6 times that captured by the KOH(aq) solution. Our Zn3 L exhibited three valuable properties: rapid CO2 fixation without a base, reversibility, and ability to capture dilute CO2 ; thus Zn3 L is a promising candidate as CO2 fixatives.

8.
ACS Appl Mater Interfaces ; 14(3): 3716-3725, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34978407

RESUMO

The rapid detection of biomolecules greatly contributes to health management, clinical diagnosis, and prevention of diseases. Mass spectrometry (MS) is effective for detecting and analyzing various molecules at high throughput. However, there are problems with the MS analysis of biological samples, including complicated separation operations and essential pretreatments. In this study, a nanostructured organosilica substrate for laser desorption/ionization mass spectrometry (LDI-MS) is designed and synthesized to detect peptides and small proteins efficiently and rapidly. The surface functionality of the substrate is tuned by perfluoroalkyl/alkylamide groups mixed at a molecular level. This contributes to both lowering the surface free energy and introducing weak anchoring sites for peptides and proteins. Analyte molecules applied onto the substrate are homogeneously distributed and readily desorbed by the laser irradiation. The organosilica substrate enables the efficient LDI of various compounds, including peptides, small proteins, phospholipids, and drugs. An amyloid ß protein fragment, which is known as a biomarker for Alzheimer's disease, is detectable at 0.05 fmol µL-1. The detection of the amyloid ß at 0.2 fmol µL-1 is also confirmed in the presence of blood components. Nanostructured organosilica substrates incorporating a molecular-level surface design have the potential to enable easy detection of a wide range of biomolecules.


Assuntos
Amidas/química , Peptídeos beta-Amiloides/análise , Materiais Biocompatíveis/química , Fluorocarbonos/química , Teste de Materiais , Tamanho da Partícula , Porosidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
9.
Nanoscale Adv ; 4(18): 3718-3724, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133321

RESUMO

This paper investigates the petal effect (hydrophobicity and strong adhesion) observed on single-crystal bimodal porous GaN (porous GaN), which has almost the same electrical properties as bulk GaN. The water contact angles of porous GaN were 100°-135° despite the intrinsic hydrophilic nature of GaN. Moreover, it was demonstrated that the petal effect of porous GaN leads to the uniform attachment of water solutions, enabling highly uniform and aggregation-free attachment of chemicals and quantum dots. These results indicate that porous GaN can be applied in quantum dot light-emitting diodes and as an analytical substrate.

10.
Nanoscale ; 12(41): 21146-21154, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-32672778

RESUMO

Nanoimprinting methods have been used widely to prepare various patterned or nanostructured thin films from inorganic or organic components. However, the accumulation of large functional aromatic groups in covalently crosslinked nanoimprints is challenging, due to the difficulty in controlling the fluidity and reactivity of the precursor films. In this work, nanoimprinting of naphthalimide-silica sol-gel films results in vertically oriented nanoporous structures consisting of covalently crosslinked UV-absorbing frameworks. The nanoimprinted films demonstrate potential as robust analytical substrates for laser desorption/ionization mass spectrometry (LDI-MS). The sol-gel polycondensation behavior of the precursors is examined using 29Si NMR spectroscopy to determine reaction conditions suitable for nanoimprinting. The inorganic-organic hybrid frameworks containing a high density of naphthalimide groups exhibit small volume shrinkage during the polycondensation reactions, which leads to desired nanoimprinting. Various bio-related compounds on the order of picomole to femtomole quantities are detectable by LDI-MS measurements using the nanoimprinted substrates. To improve their user-friendliness and signal intensity in LDI-MS analysis, the nanoimprinted substrates are patterned with surface-modified silica nanoparticles. The direct formation of surface nanostructures by nanoimprinting of functional organosilica films may open a new path to developing optically and electronically functional materials, thereby widening their utility.

11.
ACS Appl Mater Interfaces ; 8(37): 24315-8, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27606702

RESUMO

An electrochemical electrode physisorbed with Ni(cyclam) complex molecules containing tetraphenylborate ions (BPh4(-)) as counteranions shows catalytic activity for the reduction reaction of CO2 to CO in an aqueous electrolyte, superior to that of an electrode physisorbed with conventional [Ni(cyclam)]Cl2 complex molecules. The BPh4(-)-containing Ni(cyclam) is inferred as having high hydrophobicity based on its Hansen solubility parameter (HSP), with an interaction sphere excluding HSPs of water in a three-dimensional vector space. The high hydrophobicity of BPh4(-)-containing Ni(cyclam) molecules inhibits their dissolution into aqueous electrolyte and retains their immobilization onto the electrode surface, which we believe to result in the improved catalytic activity of the electrode physisorbed with them. HSP analysis also provides an optimized mixing ratio of solvents dissolving BPh4(-)-containing Ni(cyclam) molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA