Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(19): 2956-2969, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654004

RESUMO

We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Condicionamento Físico Animal , Ratos , Animais , Ratos Wistar , Metabolismo dos Lipídeos , Insuficiência Cardíaca/metabolismo
2.
PLoS Pathog ; 17(4): e1009495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819309

RESUMO

Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Doença de Chagas/parasitologia , Ácidos Graxos/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Metabolismo Energético , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Nutrientes/deficiência , Oxirredução , Fosforilação Oxidativa , Trypanosoma cruzi/crescimento & desenvolvimento
3.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372993

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM: we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS: Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS: Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS: These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.


Assuntos
Intolerância à Glucose , Insulinas , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Camundongos , Apolipoproteínas E/genética , Dieta , Estradiol/farmacologia , Glucose , Intolerância à Glucose/etiologia , Intolerância à Glucose/patologia , Inflamação/patologia , Fígado/patologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Triglicerídeos
4.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047174

RESUMO

In pathological cardiac hypertrophy, the heart is more dependent on glucose than fatty acids. This shift in energy metabolism occurs due to several factors, including the oxygen deficit, which activates hypoxia-inducible factor-1α (HIF-1α), a critical molecule related to glucose metabolism. However, there are gaps regarding the behavior of key proteins in the glycolytic pathway and HIF-1α during the transition from hypertrophy to heart failure (HF). This study assesses the hypothesis that there is an early change and enhancement of HIF-1α and the glycolytic pathway, as well as an association between them during cardiac remodeling. Sham and aortic stenosis Wistar rats were analyzed at 2, 6, and 18 weeks and in HF (n = 10-18). Cardiac structure and function were investigated by echocardiogram. Myocardial glycolysis, the aerobic and anaerobic pathways and glycogen were analyzed by enzymatic assay, Western blot, and enzyme-linked immunosorbent assay (ELISA). The following were observed: increased left ventricular hypertrophy; early diastolic function change and severe systolic and diastolic dysfunction in HF; increased HIF-1α in the 2nd week and in HF; precocious alteration and intensification of glycolysis with a shift to anaerobic metabolism from the 6th week onwards; association between HIF-1α, glycolysis, and the anaerobic pathway. Our hypothesis was confirmed as there was an early change and intensification in glucose metabolism, alteration in HIF-1α, and an association between data during the progression from hypertrophy to heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Ratos , Animais , Remodelação Ventricular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ratos Wistar , Cardiomegalia , Glicólise/fisiologia , Glucose/metabolismo
5.
Biometals ; 35(4): 689-697, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35546213

RESUMO

Some studies have demonstrated the participation of leptin in magnesium metabolism. On the other hand, there is evidence of the role of magnesium in the leptin intracellular signaling pathway. Therefore, the aim of this study was to investigate the existence of a relationship between serum leptin concentrations and magnesium biomarkers in women with obesity. Case-control study involving 108 women aged between 20 and 50 years, divided into two groups: obese (n = 52) and control (n = 56). Body weight, height and waist circumference, body mass index, dietary magnesium intake, magnesium biomarkers and serum leptin concentrations were measured. Serum leptin concentrations showed a statistically significant difference between groups (p < 0.001). Mean values of magnesium intake were lower than intake recommended, and with no statistically significant difference between two groups (p > 0.05). Women with obesity had lower plasma and erythrocyte magnesium concentrations than control group did (p < 0.001). Magnesium concentrations found in the urine of women with obesity were higher than the control group was, with a statistically significant difference (p < 0.001). There was a correlation between serum leptin and magnesium biomarkers (p < 0.001). Women with obesity show an inadequate magnesium nutritional status characterized by low plasma and erythrocyte concentrations and high concentrations in urine, and they also have high serum leptin concentrations. Thus, it was possible to observe a correlation between hyperleptinemia and magnesium biomarkers, requiring further studies to determine whether the dysfunction of this hormone can influence the compartmentalization of the mineral in obese organisms.


Assuntos
Leptina , Magnésio , Adulto , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade , Adulto Jovem
6.
Int J Sports Med ; 42(8): 749-759, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33321520

RESUMO

This study aimed to investigate the impact of a 16-week dance-based aerobic exercise program on lymphocyte function in healthy and type 2 diabetes mellitus (T2DM) women. We enrolled 23 women: 11 with T2DM and 12 non-diabetic controls. Initially, we performed anthropometry and body composition measurements, afterwards, plasma levels of C-reactive protein, lipids, and glucose were determined. We used flow cytometry to measure the CD25 and CD28 expression in circulating lymphocytes, T-regulatory (Treg) cell percentage, lymphocyte proliferation, and cytokines released by cultured lymphocytes. The T2DM group had a lower proportion of CD28+ cells and a higher percentage of Treg lymphocytes and proliferative capacity at the baseline compared with the control group. After 16 weeks of the program, differences in lymphocytes between the T2DM and the control groups disappeared. The dance program promoted IL-10 increase in both groups. We found decreased IL-4, IL-2, and IL-6 secretion in lymphocytes from the control group and increased IL-17 secretion and IL-10/IL-17 ratio in the T2DM group after the program. The program promoted marked changes in lymphocytes in diabetic women, leading to a balance between the different profiles.


Assuntos
Antígenos CD28/sangue , Dança/fisiologia , Diabetes Mellitus Tipo 2/sangue , Exercício Físico/fisiologia , Subunidade alfa de Receptor de Interleucina-2/sangue , Linfócitos/metabolismo , Idoso , Glicemia/análise , Composição Corporal , Proteína C-Reativa/análise , Estudos de Casos e Controles , Proliferação de Células , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Feminino , Humanos , Interleucinas/sangue , Lipídeos/sangue , Linfócitos/citologia , Linfócitos/fisiologia , Pessoa de Meia-Idade , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/fisiologia , Fatores de Tempo
7.
Cell Physiol Biochem ; 54(6): 1199-1217, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252886

RESUMO

BACKGROUND/AIMS: Obesity is a risk factor associated with cardiometabolic complications. Recently, we reported that miRNA-22 deletion attenuated high-fat diet-induced adiposity and prevented dyslipidemia without affecting cardiac hypertrophy in male mice. In this study, we examined the impact of miRNA-22 in obesogenic diet-induced cardiovascular and metabolic disorders in females. METHODS: Wild type (WT) and miRNA-22 knockout (miRNA-22 KO) females were fed a control or an obesogenic diet. Body weight gain, adiposity, glucose tolerance, insulin tolerance, and plasma levels of total cholesterol and triglycerides were measured. Cardiac and white adipose tissue remodeling was assessed by histological analyses. Echocardiography was used to evaluate cardiac function and morphology. RNA-sequencing analysis was employed to characterize mRNA expression profiles in female hearts. RESULTS: Loss of miRNA-22 attenuated body weight gain, adiposity, and prevented obesogenic diet-induced insulin resistance and dyslipidemia in females. WT obese females developed cardiac hypertrophy. Interestingly, miRNA-22 KO females displayed cardiac hypertrophy without left ventricular dysfunction and myocardial fibrosis. Both miRNA-22 deletion and obesogenic diet changed mRNA expression profiles in female hearts. Enrichment analysis revealed that genes associated with regulation of the force of heart contraction, protein folding and fatty acid oxidation were enriched in hearts of WT obese females. In addition, genes related to thyroid hormone responses, heart growth and PI3K signaling were enriched in hearts of miRNA-22 KO females. Interestingly, miRNA-22 KO obese females exhibited reduced mRNA levels of Yap1, Egfr and Tgfbr1 compared to their respective controls. CONCLUSION: This study reveals that miRNA-22 deletion induces cardiac hypertrophy in females without affecting myocardial function. In addition, our findings suggest miRNA-22 as a potential therapeutic target to treat obesity-related metabolic disorders in females.


Assuntos
Cardiomegalia , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Doenças Metabólicas , MicroRNAs/genética , Miocárdio , Obesidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
8.
Cell Physiol Biochem ; 53(1): 200-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287628

RESUMO

BACKGROUND/AIMS: Skeletal mass loss is reported in several catabolic conditions and it has been associated with a reduced intracellular L-glutamine content. We investigated the association of intracellular L-glutamine concentration with the protein content in skeletal muscle cells. METHODS: We cultivated C2C12 myotubes in the absence or presence of 2 (reference condition), 8 or 16 mM L-glutamine for 48 hours, and the variations in the contents of amino acids and proteins measured. We used an inhibitor of L-glutamine synthesis (L-methionine sulfoximine - MSO) to promote a further reduction in intracellular L-glutamine levels. Amino acids contents in cells and media were measured using LC-MS/MS. We measured changes in phosphorylated Akt, RP-S6, and 4E-BP1contents in the absence or presence of insulin by western blotting. RESULTS: Reduced intracellular L-glutamine concentration was associated with decreased protein content and increased protein breakdown. Low intracellular glutamine levels were also associated with decreased p-Akt contents in the presence of insulin. A further decrease in intracellular L-glutamine caused by glutamine synthetase inhibitor reduced protein content and levels of amino acids generated from glutamine metabolism and increased bAib still further. Cells exposed to high medium glutamine levels did not have any change in protein content but exhibited increased contents of the amino acids derived from L-glutamine metabolism. CONCLUSION: Intracellular L-glutamine levels per se play a role in the control of protein content in skeletal muscle myotubes.


Assuntos
Proteínas de Transporte/metabolismo , Glutamina/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/análise , Proteínas de Ciclo Celular , Linhagem Celular , Cromatografia Líquida , Fatores de Iniciação em Eucariotos , Glutamina/análise , Insulina/análise , Camundongos , Fibras Musculares Esqueléticas/química , Fosfoproteínas/análise , Fosforilação , Proteínas Proto-Oncogênicas c-akt/análise , Proteína S6 Ribossômica/análise , Espectrometria de Massas em Tandem
9.
J Cell Physiol ; 233(4): 3515-3528, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28926107

RESUMO

The effect of fenofibrate on the metabolism of skeletal muscle and visceral white adipose tissue of diet-induced obese (DIO) mice was investigated. C57BL/6J male mice were fed either a control or high-fat diet for 8 weeks. Fenofibrate (50 mg/Kg BW, daily) was administered by oral gavage during the last two weeks of the experimental period. Insulin-stimulated glucose metabolism in soleus muscles, glucose tolerance test, insulin tolerance test, indirect calorimetry, lipolysis of visceral white adipose tissue, expression of miR-103-3p in adipose tissue, and miR-1a, miR-133a/b, miR-206, let7b-5p, miR-23b-3p, miR-29-3p, miR-143-3p in soleus muscle, genes related to glucose and fatty acid metabolism in adipose tissue and soleus muscle, and proteins (phospho-AMPKα2, Pgc1α, Cpt1b), intramuscular lipid staining, and activities of fatty acid oxidation enzymes in skeletal muscle were investigated. In DIO mice, fenofibrate prevented weight gain induced by HFD feeding by increasing energy expenditure; improved whole body glucose homeostasis, and in skeletal muscle, increased insulin dependent glucose uptake, miR-1a levels, reduced intramuscular lipid accumulation, and phospho-AMPKα2 levels. In visceral adipose tissue of obese mice, fenofibrate decreased basal lipolysis rate and visceral adipocytes hypertrophy, and induced the expression of Glut-4, Irs1, and Cav-1 mRNA and miR-103-3p suggesting a higher insulin sensitivity of the adipocytes. The evidence is presented herein that beneficial effects of fenofibrate on body weight, glucose homeostasis, and muscle metabolism might be related to its action in adipose tissue. Moreover, fenofibrate regulates miR-1a-3p in soleus and miR-103-3p in adipose tissue, suggesting these microRNAs might contribute to fenofibrate beneficial effects on metabolism.


Assuntos
Adipócitos/efeitos dos fármacos , Dieta Hiperlipídica , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Resistência à Insulina/genética , Gordura Intra-Abdominal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo
10.
Food Sci Nutr ; 12(4): 2436-2454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628220

RESUMO

Overweight and obesity are closely linked to gut dysbiosis/dysmetabolism and disrupted De-Ritis ratio [aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio], which may contribute to chronic noncommunicable diseases onset. Concurrently, extensive research explores nutraceuticals, and health-enhancing supplements, for disease prevention or treatment. Thus, sedentary overweight volunteers were double-blind randomized into two groups: Novel Nutraceutical_(S) (without silymarin) and Novel Nutraceutical (with silymarin). Experimental formulations were orally administered twice daily over 180 consecutive days. We evaluated fecal gut microbiota, based on partial 16S rRNA sequences, biochemistry and endocrine markers, steatosis biomarker (AST/ALT ratio), and anthropometric parameters. Post-supplementation, only the Novel Nutraceutical group reduced Clostridium clostridioforme (Firmicutes), Firmicutes/Bacteroidetes ratio (F/B ratio), and De-Ritis ratio, while elevating Bacteroides caccae and Bacteroides uniformis (Bacteroidetes) in Brazilian sedentary overweight volunteers after 180 days. In summary, the results presented here allow us to suggest the gut microbiota as the action mechanism of the Novel Nutraceutical promoting metabolic hepatic recovery in obesity/overweight non-drug interventions.

11.
Nutrients ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004105

RESUMO

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Assuntos
Glutamina , Condicionamento Físico Animal , Ratos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Nutricionais , Glutamatos/farmacologia , Condicionamento Físico Animal/fisiologia
12.
Heliyon ; 9(11): e21225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034704

RESUMO

Allergic contact dermatitis (ACD) is an inflammatory skin reaction whose incidence has increased and has been associated with a dietary pattern rich in saturated fats and refined sugars. Considering the increased incidence of ACD and the lack of research about the influence of a short-term high-sugar diet on dermatitis, our aim is to improve understanding of the influence of a high-sugar diet on ACD. We introduced a diet rich in sugar fifteen days before inducing contact dermatitis with oxazolone, in mice, and maintained it until the end of the experiment, which lasted three weeks in total. The dermatitis model increased cholesterol and triglycerides in the liver, and the combination of diet and dermatitis increased weight and worsened liver cholesterol measurements. Furthermore, the high-sugar diet increased the production of IL-6, IFN-γ and TNF-α in the skin, which may be involved in the increase in epithelial skin thickness observed in experimental ACD.

13.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36829850

RESUMO

Although current guidelines recommend resistance exercise in combination with aerobic training to increase muscle strength and prevent skeletal muscle loss during cardiac remodeling, its effects are not clear. In this study, we evaluated the effects of resistance training on cardiac remodeling and the soleus muscle in long-term myocardial infarction (MI) rats. METHODS: Three months after MI induction, male Wistar rats were assigned to Sham (n = 14), MI (n = 9), and resistance exercised MI (R-MI, n = 13) groups. The rats trained three times a week for 12 weeks on a climbing ladder. An echocardiogram was performed before and after training. Protein expression of the insulin-like growth factor (IGF)-1/protein kinase B (Akt)/rapamycin target complex (mTOR) pathway was analyzed by Western blot. RESULTS: Mortality rate was higher in MI than Sham; in the R-MI group, mortality rate was between that in MI and Sham and did not differ significantly from either group. Exercise increased maximal load capacity without changing cardiac structure and left ventricular function in infarcted rats. Infarction size did not differ between infarcted groups. Catalase activity was lower in MI than Sham and glutathione peroxidase lower in MI than Sham and R-MI. Protein expression of p70S6K was lower in MI than Sham and p-FoxO3 was lower in MI than Sham and R-MI. Energy metabolism did not differ between groups, except for higher phosphofrutokinase activity in R-MI than MI. CONCLUSION: Resistance exercise is safe and increases muscle strength regardless structural and functional cardiac changes in myocardial-infarcted rats. This exercise modality attenuates soleus glycolytic metabolism changes and improves the expression of proteins required for protein turnover and antioxidant response.

14.
FEBS Open Bio ; 13(9): 1709-1722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470707

RESUMO

Autophagy plays a vital role in cell homeostasis by eliminating nonfunctional components and promoting cell survival. Here, we examined the levels of autophagy signaling proteins after 7 days of overload hypertrophy in the extensor digitorum longus (EDL) and soleus muscles of control and diabetic rats. We compared control and 3-day streptozotocin-induced diabetic rats, an experimental model for type 1 diabetes mellitus (T1DM). EDL muscles showed increased levels of basal autophagy signaling proteins. The diabetic state did not affect the extent of overload-induced hypertrophy or the levels of autophagy signaling proteins (p-ULK1, Beclin-1, Atg5, Atg12-5, Atg7, Atg3, LC3-I and II, and p62) in either muscle. The p-ULK-1, Beclin-1, and p62 protein expression levels were higher in the EDL muscle than in the soleus before the hypertrophic stimulus. On the contrary, the soleus muscle exhibited increased autophagic signaling after overload-induced hypertrophy, with increases in Beclin-1, Atg5, Atg12-5, Atg7, Atg3, and LC3-I expression in the control and diabetic groups, in addition to p-ULK-1 in the control groups. After hypertrophy, Beclin-1 and Atg5 levels increased in the EDL muscle of both groups, while p-ULK1 and LC3-I increased in the control group. In conclusion, the baseline EDL muscle exhibited higher autophagy than the soleus muscle. Although TDM1 promotes skeletal muscle mass loss and strength reduction, it did not significantly alter the extent of overload-induced hypertrophy and autophagy signaling proteins in EDL and soleus muscles, with the two groups exhibiting different patterns of autophagy activation.


Assuntos
Diabetes Mellitus Experimental , Ratos , Animais , Proteína Beclina-1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Autofagia
15.
Antioxidants (Basel) ; 12(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107271

RESUMO

INTRODUCTION: Exercise is an important therapeutic strategy for preventing and treating myocardial infarction (MI)-induced cardiac remodeling and heart failure. However, the myocardial effects of resistance exercise on infarcted hearts are not completely established. In this study, we investigated the effects of resistance exercise on structural, functional, and molecular cardiac alterations in infarcted rats. METHODS: Three months after MI induction or simulated surgery, Wistar rats were assigned into three groups: Sham (n = 14); MI (n = 9); and exercised MI (MI-Ex, n = 13). Exercised rats performed, 3 times a week for 12 weeks, four climbs on a ladder with progressive loads. Cardiac structure and left ventricle (LV) function were analyzed by echocardiogram. Myocyte diameters were evaluated in hematoxylin- and eosin-stained histological sections as the smallest distance between borders drawn across the nucleus. Myocardial energy metabolism, lipid hydroperoxide, malondialdehyde, protein carbonylation, and antioxidant enzyme activities were evaluated by spectrophotometry. Gene expressions of NADPH oxidase subunits were evaluated by RT-PCR. Statistical analyses were performed using ANOVA and Tukey or Kruskal-Wallis and Dunn's test. RESULTS: Mortality did not differ between the MI-Ex and MI groups. MI had dilated left atrium and LV, with LV systolic dysfunction. Exercise increased the maximum load-carrying capacity, with no changes in cardiac structure or LV function. Myocyte diameters were lower in MI than in Sham and MI-Ex. Lactate dehydrogenase and creatine kinase activity were lower in MI than in Sham. Citrate synthase and catalase activity were lower in MI and MI-Ex than in Sham. Lipid hydroperoxide concentration was lower in MI-Ex than in MI. Nox2 and p22phox gene expressions were higher in MI-Ex than in Sham. Gene expression of Nox4 was higher in MI and MI-Ex than in Sham, and p47phox was lower in MI than in Sham. CONCLUSION: Late resistance exercise was safe in infarcted rats. Resistance exercise improved maximum load-carrying capacity, reduced myocardial oxidative stress, and preserved myocardial metabolism, with no changes in cardiac structure or left ventricle function in infarcted rats.

16.
Diabetol Metab Syndr ; 15(1): 223, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37908006

RESUMO

BACKGROUND: Sodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established. OBJECTIVE: To evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM. METHODS: Male Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. STATISTICAL ANALYSIS: ANOVA and Tukey or Kruskal-Wallis and Dunn. RESULTS: DM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM. CONCLUSION: Long-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.

17.
Biomed Pharmacother ; 155: 113660, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095960

RESUMO

Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.


Assuntos
Resistência à Insulina , Chá de Kombucha , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Citrato (si)-Sintase/metabolismo , Farneseno Álcool/metabolismo , Farneseno Álcool/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ácidos e Sais Biliares/metabolismo , Carboidratos/farmacologia , Serina/metabolismo , Serina/farmacologia , Fosfofrutoquinase-1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
18.
Antioxidants (Basel) ; 11(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35326098

RESUMO

The use of natural products and derivatives for the prevention and control of non-communicable chronic diseases, such as type-2 diabetes (T2D), obesity, and hepatic steatosis is a way to achieve homeostasis through different metabolic pathways. Thus, male C57BL/6 mice were divided into the following groups: high-fat diet (HFD) vehicle, HFD + Supplemented, HFD + Supplemented_S, and isolated compounds. The vehicle and experimental formulations were administered orally by gavage once a day over the four weeks of the diet (28 consecutive days). We evaluated the energy homeostasis, cytokines, and mitochondrial gene expression in these groups of mice. After four weeks of supplementation, only the new nutraceutical group (HFD + Supplemented) experienced reduced fasting glycemia, insulin, HOMA index, HOMA-ß, dyslipidemia, ectopic fat deposition, and hepatic fibrosis levels. Additionally, the PPARγ coactivator 1 α (Pgc-1α), interleukin-6 (Il-6), and interleukin-10 (Il-10) gene expression were augmented, while hepatic steatosis decreased and liver parenchyma was recovered. The glutathione-S-transferase activity status was found to be modulated by the supplement. We discovered that the new nutraceutical was able to improve insulin resistance and hepatic steatosis mainly by regulating IL-6, IL-10, and Pgc-1α gene expression.

19.
Crit Care Explor ; 4(8): e0734, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928539

RESUMO

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. DESIGN: The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. PATIENTS: Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. MEASUREMENTS AND MAIN RESULTS: The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1ß, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-ß), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. CONCLUSIONS: Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

20.
Physiol Rep ; 9(3): e14755, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33580916

RESUMO

BACKGROUND: Obesity is associated with the development of insulin resistance (IR) and type-2 diabetes mellitus (T2DM); however, not all patients with T2DM are obese. The Goto-Kakizaki (GK) rat is an experimental model of spontaneous and non-obese T2DM. There is evidence that the intestine contributes to IR development in GK animals. This information prompted us to investigate small intestine remodeling in this animal model. METHODS: Four-month-old male Wistar (control) and GK rats were utilized for the present study. After removing the small intestine, the duodenum, proximal jejunum, and distal ileum were separated. We then measured villi and muscular and mucosa layer histomorphometry, goblet cells abundance, total myenteric and submucosal neuron populations, and inflammatory marker expression in the small intestinal segments and intestinal transit of both groups of animals. KEY RESULTS: We found that the GK rats exhibited decreased intestinal area (p < 0.0001), decreased crypt depth in the duodenum (p = 0.01) and ileum (p < 0.0001), increased crypt depth in the jejunum (p < 0.0001), longer villi in the jejunum and ileum (p < 0.0001), thicker villi in the duodenum (p < 0.01) and ileum (p < 0.0001), thicker muscular layers in the duodenum, jejunum, and ileum (p < 0.0001), increased IL-1ß concentrations in the duodenum and jejunum (p < 0.05), and increased concentrations of NF-κB p65 in the duodenum (p < 0.01), jejunum and ileum (p < 0.05). We observed high IL-1ß reactivity in the muscle layer, myenteric neurons, and glial cells of the experimental group. GK rats also exhibited a significant reduction in submucosal neuron density in the jejunum and ileum, ganglionic hypertrophy in all intestinal segments studied (p < 0.0001), and a slower intestinal transit (about 25%) compared to controls. CONCLUSIONS: The development of IR and T2DM in GK rats is associated with small intestine remodeling that includes marked alterations in small intestine morphology, local inflammation, and reduced intestinal transit.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Trânsito Gastrointestinal , Resistência à Insulina , Intestino Delgado/fisiopatologia , Animais , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Duodeno/inervação , Duodeno/metabolismo , Duodeno/fisiopatologia , Íleo/inervação , Íleo/metabolismo , Íleo/fisiopatologia , Mediadores da Inflamação/metabolismo , Intestino Delgado/inervação , Intestino Delgado/metabolismo , Jejuno/inervação , Jejuno/metabolismo , Jejuno/fisiopatologia , Masculino , Plexo Mientérico/fisiopatologia , Ratos Wistar , Plexo Submucoso/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA