Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(3): 517-520, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306978

RESUMO

Structural biology, as powerful as it is, can be misleading. We highlight four fundamental challenges: interpreting raw experimental data; accounting for motion; addressing the misleading nature of in vitro structures; and unraveling interactions between drugs and "anti-targets." Overcoming these challenges will amplify the impact of structural biology on drug discovery.


Assuntos
Descoberta de Drogas , Biologia Molecular , Beleza
2.
J Am Chem Soc ; 137(7): 2695-703, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625324

RESUMO

Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.


Assuntos
Biologia Computacional , Descoberta de Drogas , Proteínas/metabolismo , Desenho de Fármacos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas/química , Termodinâmica
3.
Antimicrob Agents Chemother ; 59(3): 1569-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547360

RESUMO

VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m(7)GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Vírus da Influenza A/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular , Cães , Células HEK293 , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia
4.
J Med Chem ; 66(19): 13384-13399, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774359

RESUMO

Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of GDC-1971 (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.

5.
Front Mol Biosci ; 9: 1007744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483537

RESUMO

Biomolecular condensates are compartmentalized communities of biomolecules, which unlike traditional organelles, are not enclosed by membranes. Condensates play roles in diverse cellular processes, are dysfunctional in many disease states, and are often enriched in classically "undruggable" targets. In this review, we provide an overview for how drugs can modulate condensate structure and function by phenotypically classifying them as dissolvers (dissolve condensates), inducers (induce condensates), localizers (alter localization of the specific condensate community members) or morphers (alter the physiochemical properties). We discuss the growing list of bioactive molecules that function as condensate modifiers (c-mods), including small molecules, oligonucleotides, and peptides. We propose that understanding mechanisms of condensate perturbation of known c-mods will accelerate the discovery of a new class of therapies for difficult-to-treat diseases.

6.
Nat Rev Drug Discov ; 21(11): 841-862, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35974095

RESUMO

In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.


Assuntos
Condensados Biomoleculares , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Descoberta de Drogas
7.
J Med Chem ; 51(5): 1214-22, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18288794

RESUMO

Small molecule protein kinase inhibitors are widely employed as biological reagents and as leads in the design of drugs for a variety of diseases. We investigated the phenomenon of kinase-likeness, i.e., the propensity of ligands to inhibit protein kinases, in the context of kinase-specific substructural fragments. The frequency of occurrence of multiple structural fragments in kinase inhibitor libraries relative to nonkinase compounds has been analyzed. A combination of structural fragment counts, termed the "2-0" kinase-likeness rule, provides approximately 5-fold enrichment in kinase active compounds. This rule has been validated using in-house kinase counterscreening data and applied prospectively to uncover kinase activities in marketed drugs. In addition, the role of discriminating fragments in kinase recognition was interrogated using available structural data, providing an insight into their effect on inhibitor potency and selectivity. One of these fragments, bisarylaniline, has been characterized as a kinase-privileged fragment with specific binding preferences and a link to increased activity within kinases.


Assuntos
Preparações Farmacêuticas/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Compostos de Anilina/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
8.
J Med Chem ; 61(17): 7419-7424, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-29745657

RESUMO

Although it is extremely challenging to invent new medicines, I have observed that certain behaviors seem to be commonly found among successful medicinal chemists. Those who exhibit most of these character traits are far more likely to bring new drugs into the clinic and onto the market. And, importantly, organizations that encourage these behaviors are far more likely to be successful. These traits can be broken into two categories: "general" and "discipline-specific". General traits are those that are common to all great scientists, while the discipline-specific ones are more specialized behaviors relevant to the medicinal chemistry enterprise. I describe these traits, and include some specific examples for each of the medicinal chemistry characteristics that I hope will be illustrative. While success in drug discovery is never guaranteed, I believe that embracing and encouraging these behaviors increase the probability of a successful outcome.


Assuntos
Química Farmacêutica , Desenho de Fármacos , Humanos , Pesquisadores/psicologia
9.
J Comput Aided Mol Des ; 26(1): 97-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22215490
11.
Adv Drug Deliv Rev ; 54(3): 255-71, 2002 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-11922947

RESUMO

Recent developments in combinatorial chemistry and high-throughput screening have dramatically increased the scale on which drug discovery programs are carried out. Along with these advances has come a need for automated methods of determining which compounds from a library should be synthesized and screened. These methods range from simple counting schemes to sophisticated machine learning techniques such as neural networks. While many of these methods have performed well in validation studies, the field is still in its formative stage. This paper reviews a number of computational techniques for identifying drug-like molecules and examines challenges facing the field.


Assuntos
Técnicas de Química Combinatória , Biologia Computacional , Farmacologia/métodos , Inteligência Artificial , Bases de Dados Factuais , Modelos Moleculares , Projetos de Pesquisa
12.
Curr Opin Drug Discov Devel ; 5(4): 540-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12197312

RESUMO

This review discusses computational methods for the prediction of drug-likeness. The coverage of published works include the assessment of historical practices of lead generation and optimization, surveys of the properties of known drugs and their constituent fragments and scaffolds, methods for delineating drug space, optimization techniques for simultaneously enhancing multiple properties and drug-like characteristics, similarity metrics and the application of more advanced pattern recognition algorithms for the prediction of drug-likeness. Areas which could be improved in this field are the scope of the datasets used to build models, the chemical interpretability of models, the use of multivariate optimization methods for drug design and the application of underappreciated statistical methods proven to work in other fields.


Assuntos
Modelos Químicos , Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Animais , Humanos , Tecnologia Farmacêutica/tendências
13.
J Med Chem ; 47(23): 5616-9, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15509160

RESUMO

Small molecule protein kinase inhibitors are widely employed as biological reagents and as leads in the design of drugs for a variety of diseases. One of the hardest challenges in kinase inhibitor design is achieving target selectivity. By utilizing X-ray structural information for four promiscuous inhibitors, we propose a five-point pharmacophore for kinase frequent hitters, demonstrate its ability to discriminate between frequent hitters and selective ligands, and suggest a strategy for selective inhibitor design.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular
14.
J Med Chem ; 57(15): 6668-78, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25019388

RESUMO

In our effort to develop agents for the treatment of influenza, a phenotypic screening approach utilizing a cell protection assay identified a series of azaindole based inhibitors of the cap-snatching function of the PB2 subunit of the influenza A viral polymerase complex. Using a bDNA viral replication assay (Wagaman, P. C., Leong, M. A., and Simmen, K. A. Development of a novel influenza A antiviral assay. J. Virol. Methods 2002, 105, 105-114) in cells as a direct measure of antiviral activity, we discovered a set of cyclohexyl carboxylic acid analogues, highlighted by VX-787 (2). Compound 2 shows strong potency versus multiple influenza A strains, including pandemic 2009 H1N1 and avian H5N1 flu strains, and shows an efficacy profile in a mouse influenza model even when treatment was administered 48 h after infection. Compound 2 represents a first-in-class, orally bioavailable, novel compound that offers potential for the treatment of both pandemic and seasonal influenza and has a distinct advantage over the current standard of care treatments including potency, efficacy, and extended treatment window.


Assuntos
Antivirais/química , Compostos Aza/química , Indóis/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Administração Oral , Animais , Antivirais/síntese química , Antivirais/farmacologia , Compostos Aza/síntese química , Compostos Aza/farmacologia , Disponibilidade Biológica , Cães , Farmacorresistência Viral , Indóis/síntese química , Indóis/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Infecções por Orthomyxoviridae/tratamento farmacológico , Ratos , Especificidade da Espécie , Estereoisomerismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
15.
Nat Chem ; 3(9): 692-5, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21860457

RESUMO

Powerful technologies allow the synthesis and testing of large numbers of new compounds, but the failure rate of pharmaceutical R&D remains very high. Greater understanding of the fundamental physical chemical behaviour of molecules could be the key to greatly enhancing the success rate of drug discovery.


Assuntos
Fenômenos Químicos , Descoberta de Drogas/métodos , Preparações Farmacêuticas/química , Indústria Farmacêutica/métodos , Ligantes , Modelos Moleculares , Preparações Farmacêuticas/metabolismo , Conformação Proteica , Pesquisa
16.
ACS Med Chem Lett ; 2(10): 758-63, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900264

RESUMO

The synthesis of novel, selective, orally active 2,5-disubstituted 6H-pyrimido[1,6-b]pyridazin-6-one p38α inhibitors is described. Application of structural information from enzyme-ligand complexes guided the selection of screening compounds, leading to the identification of a novel class of p38α inhibitors containing a previously unreported bicyclic heterocycle core. Advancing the SAR of this series led to the eventual discovery of 5-(2,6-dichlorophenyl)-2-(2,4-difluorophenylthio)-6H-pyrimido[1,6-b]pyridazin-6-one (VX-745). VX-745 displays excellent enzyme activity and selectivity, has a favorable pharmacokinetic profile, and demonstrates good in vivo activity in models of inflammation.

17.
Drug Discov Today ; 7(11): 583-4, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12047860
19.
Bioorg Med Chem Lett ; 17(12): 3406-11, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17482818

RESUMO

Reversible tetrapeptide-based compounds have been shown to effectively inhibit the hepatitis C virus NS3.4A protease. Inhibition of viral replicon RNA production in Huh-7 cells has also been demonstrated. We show herein that the inclusion of hydrogen bond donors on the P4 capping group of tetrapeptide-based inhibitors result in increased binding potency to the NS3.4A protease. The capping groups also impart significant effects on the pharmacokinetic profile of these inhibitors.


Assuntos
Antivirais/farmacocinética , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacocinética , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/síntese química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Desenho de Fármacos , Hepacivirus/enzimologia , Ligação de Hidrogênio , Camundongos , Testes de Sensibilidade Microbiana , Oligopeptídeos/antagonistas & inibidores , Inibidores de Proteases/síntese química , Relação Estrutura-Atividade , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA