Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 156(3): 428-39, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24462247

RESUMO

Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology.


Assuntos
Divisão Celular , Membrana Celular/química , Lipídeos de Membrana/análise , Cromatografia Líquida , Citocinese , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lipídeos de Membrana/biossíntese , Redes e Vias Metabólicas , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
2.
Small ; 8(7): 1029-37, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22378567

RESUMO

The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA-SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin-conjugated QDs, which may be due to the smaller size of DHLA-SB QDs and/or to their superior intracellular stability.


Assuntos
Betaína/análogos & derivados , Pontos Quânticos , Ácido Tióctico/análogos & derivados , Animais , Betaína/química , Citoplasma/metabolismo , Eletroporação , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Microinjeções , Ácido Tióctico/química , Xenopus laevis
3.
Langmuir ; 28(43): 15177-84, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23006042

RESUMO

High colloidal stability in aqueous conditions is a prerequisite for fluorescent nanocrystals, otherwise known as "quantum dots", intended to be used in any long-term bioimaging experiment. This essential property implies a strong affinity between the nanoparticles themselves and the ligands they are coated with. To further improve the properties of the bidentate monozwitterionic ligand previously developed in our team, we synthesized a multidentate polyzwitterionic ligand, issued from the copolymerization of a bidentate monomer and a monozwitterionic one. The nanocrystals passivated by this polymeric ligand showed an exceptional colloidal stability, regardless of the medium conditions (pH, salinity, dilution, and biological environment), and we demonstrated the affinity of the polymer exceeded by 3 orders of magnitude that of the bidentate ligand (desorption rates assessed by a competition experiment). The synthesis of the multidentate polyzwitterionic ligand proved also to be easily tunable and allowed facile functionalization of the corresponding quantum dots, which led to successful specific biomolecules targeting.

4.
Biophys J ; 100(11): 2810-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641327

RESUMO

We describe a wide-field fluorescence microscope setup which combines HiLo microscopy technique with the use of a two-color fluorescent probe. It allows one-shot fluorescence optical sectioning of thick biological moving sample which is illuminated simultaneously with a flat and a structured pattern at two different wavelengths. Both homogenous and structured fluorescence images are spectrally separated at detection and combined similarly with the HiLo microscopy technique. We present optically sectioned full-field images of Xenopus laevis embryos acquired at 25 images/s frame rate.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Fenômenos Ópticos , Animais , Cor , Microscopia de Fluorescência/instrumentação , Microesferas , Xenopus laevis/embriologia
5.
J Am Chem Soc ; 132(13): 4556-7, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20235547

RESUMO

We have developed a novel surface coating for semiconductor quantum dots (QDs) based on a heterobifunctional ligand that overcomes most of the previous limits of these fluorescent probes in bioimaging applications. Here we show that QDs capped with bidentate zwitterionic dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands are a favorable alternative to polyethylene glycol-coated nanoparticles since they combine small sizes, low nonspecific adsorption, preserved optical properties, and excellent stability over time and a wide range of pH and salinity. Additionally, these QDs can easily be functionalized with biomolecules such as streptavidin (SA) and biotin. We applied streptavidin-functionalized DHLA-SB QDs to track the intracellular recycling of cannabinoid receptor 1 (CB1R) in live cells. These QDs selectively recognized the pool of receptors at the cell surface via SA-biotin interactions with negligible nonspecific adsorption. The QDs retained their optical properties, allowing the internalization of CB1R into endosomes to be followed. Moreover, the cellular activity was apparently unaffected by the probe.


Assuntos
Betaína/análogos & derivados , Imagem Molecular/métodos , Pontos Quânticos , Ácido Tióctico/análogos & derivados , Betaína/química , Linhagem Celular , Sobrevivência Celular , Humanos , Ligantes , Microscopia de Fluorescência , Tamanho da Partícula , Receptor CB1 de Canabinoide/química , Propriedades de Superfície , Ácido Tióctico/química
6.
Biol Cell ; 100(5): 303-13, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18052928

RESUMO

BACKGROUND INFORMATION: The nucleolus is a dynamic structure. It has been demonstrated that nucleolar proteins rapidly associate with and dissociate from nucleolar components in continuous exchanges with the nucleoplasm using GFP (green fluorescent protein)-tagged proteins. However, how the exchanges within one nucleolus and between nucleoli within the nuclear volume occurred is still poorly understood. RESULTS: The movement of PAGFP (photoactivatable GFP)-tagged proteins that become visible after photoactivation can be followed. In the present study, we establish the protocol allowing quantification of the traffic of PAGFP-tagged nucleolar proteins in nuclei containing two nucleoli. The traffic in the activated area, at the periphery of the activated area and to the neighbouring nucleolus is measured. Protein B23 is rapidly replaced in the activated area, and at the periphery of the activated area the steady state suggests intranucleolar recycling of B23; this recycling is LMB (leptomycin B)-sensitive. The pool of activated B23 is equally distributed in the volume of the two nucleoli within 2 min. The three-dimensional distribution of the proteins Nop52 and fibrillarin is less rapid than that of B23 but is also LMB-sensitive. In contrast, traffic of fibrillarin from the nucleoli to the CB (Cajal body) was not modified by LMB. CONCLUSIONS: We propose that the steady state of nucleolar proteins in nucleoli depends on the affinity of the proteins for their partners and on intranucleolar recycling. This steady state can be impaired by LMB but not the uptake in the neighbouring nucleolus or the CB.


Assuntos
Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Nucléolo Celular/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos , Sensibilidade e Especificidade , Fatores de Tempo
7.
Mol Biol Cell ; 25(12): 1819-23, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24925915

RESUMO

Lipids are a major class of biological molecules and play many key roles in different processes. The diversity of lipids is on the same order of magnitude as that of proteins: cells express tens of thousands of different lipids and hundreds of proteins to regulate their metabolism and transport. Despite their clear importance and essential functions, lipids have not been as well studied as proteins. We discuss here some of the reasons why it has been challenging to study lipids and outline technological developments that are allowing us to begin lifting lipids out of their "Cinderella" status. We focus on recent advances in lipid identification, visualization, and investigation of their biophysics and perturbations and suggest that the field has sufficiently advanced to encourage broader investigation into these intriguing molecules.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/fisiologia , Animais , Células/metabolismo , Humanos , Lipídeos/química , Conformação Molecular
8.
Methods Mol Biol ; 1042: 337-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23980017

RESUMO

Nucleolus assembly starts in telophase with the benefit of building blocks passing through mitosis and lasts until cytokinesis generating the two independent interphasic cells. Several approaches make it possible to follow the dynamics of fluorescent molecules in live cells. Here, three complementary approaches are described to measure the dynamics of proteins during nucleolar assembly after mitosis: (1) rapid two-color 4-D imaging time-lapse microscopy that demonstrates the relative localization and movement of two proteins, (2) photoactivation that reveals the directionality of migration from the activated area, and (3) fluorescence recovery after photobleaching (FRAP) that measures the renewing of proteins in the bleached area. We demonstrate that the order of recruitment of the processing machineries into nucleoli results from differential sorting of intermediate structures assembled during telophase, the prenucleolar bodies.


Assuntos
Nucléolo Celular/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas Nucleares/genética , Imagem com Lapso de Tempo/métodos , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Mitose , Proteínas Nucleares/metabolismo , Região Organizadora do Nucléolo/metabolismo , Nucleofosmina
9.
J Biomed Opt ; 16(7): 076019, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806280

RESUMO

We describe the implementation and use of an adaptive optics loop in the imaging path of a commercial wide field microscope. We show that it is possible to maintain the optical performances of the original microscope when imaging through aberrant biological samples. The sources used for illuminating the adaptive optics loop are spectrally independent, in excitation and emission, from the sample, so they do not appear in the final image, and their use does not contribute to the sample bleaching. Results are compared with equivalent images obtained with an identical microscope devoid of adaptive optics system.


Assuntos
Microscopia de Fluorescência/instrumentação , Corantes Fluorescentes , Células HeLa , Humanos , Microscopia de Fluorescência/estatística & dados numéricos , Fenômenos Ópticos , Pontos Quânticos , Tubulina (Proteína)/metabolismo
10.
Nucleus ; 1(2): 202-11, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21326952

RESUMO

The building of nuclear bodies after mitosis is a coordinated event crucial for nuclear organization and function. The nucleolus is assembled during early G(1) phase. Here, two periods (early G1a and early G1b) have been defined. During these periods, the nucleolar compartments (DFC, GC) corresponding to different steps of ribosome biogenesis are progressively assembled. In telophase, rDNA transcription is first activated and PNBs (reservoirs of nucleolar processing proteins) are formed. The traffic of the processing proteins between incipient nucleoli and PNBs was analyzed using photoactivation. We demonstrate that the DFC protein fibrillarin passes from one incipient nucleolus to other nucleoli but not to PNBs, and that the GC proteins, B23/NPM and Nop52, shuttle between PNBs and incipient nucleoli. This difference in traffic suggests a way of regulating assembly first of DFC and then of GC. The time of residency of GC proteins is high in incipient nucleoli compared to interphase nuclei, it decreases in LMB-treated early G1a cells impairing the assembly of GC. Because the assembly of the nucleolus and that of the Cajal body at the exit from mitosis are both sensitive to CRM1 activity, we discuss the fact that assembly of GC and/or its interaction with DFC in early G1a depends on shuttling between PNBs and NORs in a manner dependent on Cajal body assembly.


Assuntos
Nucléolo Celular/metabolismo , Fase G1 , Mitose , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Nucléolo Celular/efeitos dos fármacos , DNA Ribossômico/genética , Ácidos Graxos Insaturados/farmacologia , Fase G1/efeitos dos fármacos , Células HeLa , Humanos , Carioferinas/metabolismo , Cinética , Mitose/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA