Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821049

RESUMO

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Regiões Promotoras Genéticas , RNA Polimerase II , Iniciação da Transcrição Genética , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Complexo Mediador/metabolismo , Complexo Mediador/genética , Células HeLa , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Células HEK293
2.
Mol Cell ; 81(12): 2640-2655.e8, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34019811

RESUMO

ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.


Assuntos
Glicosídeo Hidrolases/metabolismo , Poli ADP Ribosilação/fisiologia , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Linhagem Celular Tumoral , Cromatina , DNA , Dano ao DNA , Fibroblastos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/fisiologia , Células HEK293 , Células HeLa , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , Cultura Primária de Células
3.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30449723

RESUMO

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Assuntos
Proliferação de Células , Senescência Celular , Dano ao DNA , Replicação do DNA , DNA de Neoplasias/biossíntese , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/metabolismo , Animais , Montagem e Desmontagem da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Metilação , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , Fatores de Transcrição/genética , Transcrição Gênica , Neoplasias Uterinas/genética
4.
Trends Genet ; 37(3): 279-291, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33046273

RESUMO

Effective synthesis of mammalian messenger (m)RNAs depends on many factors that together direct RNA polymerase II (pol II) through the different stages of the transcription cycle and ensure efficient cotranscriptional processing of mRNAs. In addition to the many proteins involved in transcription initiation, elongation, and termination, several noncoding (nc)RNAs also function as global transcriptional regulators. Understanding the mode of action of these non-protein regulators has been an intense area of research in recent years. Here, we describe how these ncRNAs influence key regulatory steps of the transcription process, to affect large numbers of genes. Through direct association with pol II or by modulating the activity of transcription or RNA processing factors, these regulatory RNAs perform critical roles in gene expression.


Assuntos
Cromatina/genética , RNA Polimerase II/genética , RNA não Traduzido/genética , Transcrição Gênica , Animais , Regulação da Expressão Gênica/genética , Humanos , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética
5.
EMBO Rep ; 23(10): e54520, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35980303

RESUMO

CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Cromatina/genética , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA/genética , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/genética
6.
Nucleic Acids Res ; 48(14): 7712-7727, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32805052

RESUMO

Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Cromatina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Humanos , Mutação , Fosforilação , RNA/biossíntese , RNA Polimerase II/química , Análise de Sequência de RNA , Serina/metabolismo , Fatores de Elongação da Transcrição/metabolismo
7.
EMBO J ; 36(7): 934-948, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28254838

RESUMO

The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.


Assuntos
Regulação da Expressão Gênica , RNA Nuclear Pequeno/biossíntese , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Células HeLa , Humanos , RNA Polimerase II/metabolismo
8.
Mol Cell ; 52(3): 287-8, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24207021

RESUMO

In this issue of Molecular Cell, two studies (Chen et al., 2013; Schröder et al., 2013) describe how posttranslational modification of RNA polymerases (Pol) I and II by acetylation mediates the transcriptional response to either stress or growth factors.


Assuntos
Histonas/genética , Lisina/genética , RNA Polimerase II/metabolismo , RNA Polimerase I/genética , Sirtuínas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Animais , Humanos
9.
Mol Cell ; 45(1): 111-22, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22137580

RESUMO

The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.


Assuntos
Proteínas de Transporte/metabolismo , RNA Polimerase II/química , RNA Nuclear Pequeno/genética , Serina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Dados de Sequência Molecular , Fosforilação , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Transcrição Gênica
10.
Bioessays ; 38 Suppl 1: S75-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27417125

RESUMO

Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P-TEFb could be effective anti-viral agents.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Humanos , Fosforilação , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Viroses/virologia , Vírus/genética , Vírus/metabolismo
11.
Nucleic Acids Res ; 44(22): 10960-10973, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27536002

RESUMO

The U1 small nuclear (sn)RNA (U1) is a multifunctional ncRNA, known for its pivotal role in pre-mRNA splicing and regulation of RNA 3' end processing events. We recently demonstrated that a new class of human U1-like snRNAs, the variant (v)U1 snRNAs (vU1s), also participate in pre-mRNA processing events. In this study, we show that several human vU1 genes are specifically upregulated in stem cells and participate in the regulation of cell fate decisions. Significantly, ectopic expression of vU1 genes in human skin fibroblasts leads to increases in levels of key pluripotent stem cell mRNA markers, including NANOG and SOX2. These results reveal an important role for vU1s in the control of key regulatory networks orchestrating the transitions between stem cell maintenance and differentiation. Moreover, vU1 expression varies inversely with U1 expression during differentiation and cell re-programming and this pattern of expression is specifically de-regulated in iPSC-derived motor neurons from Spinal Muscular Atrophy (SMA) type 1 patient's. Accordingly, we suggest that an imbalance in the vU1/U1 ratio, rather than an overall reduction in Uridyl-rich (U)-snRNAs, may contribute to the specific neuromuscular disease phenotype associated with SMA.


Assuntos
Células-Tronco Embrionárias Humanas/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , RNA Nuclear Pequeno/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , RNA Nuclear Pequeno/metabolismo , Atrofias Musculares Espinais da Infância/genética , Transcriptoma , Regulação para Cima
12.
Nucleic Acids Res ; 43(9): 4721-32, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25897131

RESUMO

The conventional model for splicing involves excision of each intron in one piece; we demonstrate this inaccurately describes splicing in many human genes. First, after switching on transcription of SAMD4A, a gene with a 134 kb-long first intron, splicing joins the 3' end of exon 1 to successive points within intron 1 well before the acceptor site at exon 2 is made. Second, genome-wide analysis shows that >60% of active genes yield products generated by such intermediate intron splicing. These products are present at ∼15% the levels of primary transcripts, are encoded by conserved sequences similar to those found at canonical acceptors, and marked by distinctive structural and epigenetic features. Finally, using targeted genome editing, we demonstrate that inhibiting the formation of these splicing intermediates affects efficient exon-exon splicing. These findings greatly expand the functional and regulatory complexity of the human transcriptome.


Assuntos
Íntrons , Splicing de RNA , Células Cultivadas , Éxons , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sítios de Splice de RNA , Proteínas Repressoras/genética , Transcrição Gênica
13.
Genome Res ; 23(2): 281-91, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23070852

RESUMO

Human U1 small nuclear (sn)RNA, required for splicing of pre-mRNA, is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes, also located on chromosome 1 (1q12-21), were thought to be pseudogenes. However, many of these "variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells, we have identified global transcriptome changes following interrogation of the Affymetrix Human Exon ST 1.0 array. Our results indicate that this vU1 snRNA regulates expression of a subset of target genes at the level of pre-mRNA processing. This is the first indication that variant U1 snRNAs have a biological function in vivo. Furthermore, some vU1 snRNAs are packaged into unique ribonucleoproteins (RNPs), and many vU1 snRNA genes are differentially expressed in human embryonic stem cells (hESCs) and HeLa cells, suggesting developmental control of RNA processing through expression of different sets of vU1 snRNPs.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , RNA Nuclear Pequeno/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Dados de Sequência Molecular , Pseudogenes , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Transcrição Gênica
14.
RNA Biol ; 13(3): 265-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26853452

RESUMO

Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3' end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Poliadenilação , Elongação da Transcrição Genética , Pontos de Checagem do Ciclo Celular , Regulação da Expressão Gênica , Humanos , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo
15.
Nucleic Acids Res ; 42(1): 264-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097444

RESUMO

RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3'-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3'-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.


Assuntos
RNA Nuclear Pequeno/genética , Terminação da Transcrição Genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Cromatina/química , Células HeLa , Humanos , Processamento de Terminações 3' de RNA , RNA Nuclear Pequeno/biossíntese , RNA Nuclear Pequeno/metabolismo , Fatores de Transcrição/fisiologia
16.
Trends Genet ; 28(7): 333-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22622228

RESUMO

The carboxyl-terminal domain (CTD) of RNA polymerase (pol) II comprises multiple tandem repeats with the consensus sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) that can be extensively and reversibly modified in vivo. CTD modifications orchestrate the interplay between transcription and processing of mRNA. Although phosphorylation of Ser2 (Ser2P) and Ser5 (Ser5P) residues has been described as being essential for the expression of most pol II-transcribed genes, recent findings highlight gene-specific effects of newly discovered CTD modifications. Here, we incorporate these latest findings in an updated review of the currently known elements that contribute to the CTD code and how it is recognized by proteins involved in transcription and RNA maturation. As modification of the CTD has a major impact on gene expression, a better understanding of the CTD code is integral to the understanding of how gene expression is regulated.


Assuntos
RNA Polimerase II/química , Sequência de Aminoácidos , Animais , Sequência Consenso , Humanos , Dados de Sequência Molecular , Fosforilação , RNA Polimerase II/genética , RNA Mensageiro/metabolismo , Treonina/genética , Treonina/metabolismo , Transcrição Gênica
17.
Vaccines (Basel) ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675827

RESUMO

The authors would like to make the following corrections to this published paper [...].

18.
NAR Genom Bioinform ; 5(2): lqad059, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37305169

RESUMO

Transcription and co-transcriptional processes, including pre-mRNA splicing and mRNA cleavage and polyadenylation, regulate the production of mature mRNAs. The carboxyl terminal domain (CTD) of RNA polymerase (pol) II, which comprises 52 repeats of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 peptide, is involved in the coordination of transcription with co-transcriptional processes. The pol II CTD is dynamically modified by protein phosphorylation, which regulates recruitment of transcription and co-transcriptional factors. We have investigated whether mature mRNA levels from intron-containing protein-coding genes are related to pol II CTD phosphorylation, RNA stability, and pre-mRNA splicing and mRNA cleavage and polyadenylation efficiency. We find that genes that produce a low level of mature mRNAs are associated with relatively high phosphorylation of the pol II CTD Thr4 residue, poor RNA processing, increased chromatin association of transcripts, and shorter RNA half-life. While these poorly-processed transcripts are degraded by the nuclear RNA exosome, our results indicate that in addition to RNA half-life, chromatin association due to a low RNA processing efficiency also plays an important role in the regulation of mature mRNA levels.

19.
Wiley Interdiscip Rev RNA ; : e1816, 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37718413

RESUMO

A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.

20.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746936

RESUMO

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/genética , Doenças Autoimunes/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA