Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 142: 109141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802262

RESUMO

Common carp (Cyprinus carpio), a valuable aquaculture species susceptible to various infections, requires effective immune enhancement strategies. This study investigates the immunomodulatory effects of orally administered terpenoids and phenol fraction (TPF) from Padina gymnospora in C. carpio, focusing on stimulation of nonspecific immune response, immune gene expression, and protection against experimental infection. P. gymnospora is a brown seaweed species known for its bioactive compounds and medicinal properties. TPF was extracted using the Harborne fractionation method, and the presence of terpenoids and phenol compounds was confirmed by qualitative analysis and high-performance thin layer chromatography (HPTLC). TPF was administered orally in different doses to carp. Nonspecific immune responses were evaluated by measuring cellular ROS, RNI, and peroxidase production. The expression of immune genes (lysozyme and interleukin-1ß) was assessed by reverse transcriptase PCR. Furthermore, the protective efficacy of TPF was determined by infecting carp with a virulent pathogen, Aeromonas hydrophila, and monitoring mortality rates and disease symptoms. The results demonstrate that oral TPF administration significantly enhances nonspecific immune responses, with increased ROS, RNI, and peroxidase production, indicating improved immune function. Expression levels of lysozyme and interleukin-1ß were upregulated, suggesting immune system activation. Moreover, TPF exhibited significant protection against experimental infection, with lower mortality rates compared to the control group. These findings highlight TPF's potential as an effective immunostimulatory agent, enhancing immune responses and providing infection protection in carp. In conclusion, oral TPF administration stimulates nonspecific immune responses, modulates immune gene expression, and confers protection against experimental infection in carp, displaying its potential for enhancing immune responses and disease resistance in aquaculture species, and contributing to sustainable fish health management.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/fisiologia , Interleucina-1beta/genética , Muramidase/farmacologia , Fenol/farmacologia , Fenol/uso terapêutico , Terpenos/farmacologia , Terpenos/uso terapêutico , Espécies Reativas de Oxigênio , Resistência à Doença , Administração Oral , Peroxidases
2.
Biomed Pharmacother ; 159: 114288, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682245

RESUMO

Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.


Assuntos
Antineoplásicos , Glioma , Humanos , Polifenóis/farmacologia , Polifenóis/análise , Antioxidantes/química , Plantas Tolerantes a Sal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Flavonoides/farmacologia , Flavonoides/análise , Transdução de Sinais , Proliferação de Células , Antineoplásicos/farmacologia , Glioma/tratamento farmacológico
3.
Cancers (Basel) ; 15(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831355

RESUMO

Glutamine metabolism is an important hallmark of several cancers with demonstrated antitumor activity in glioblastoma cancer cells (GBM). GBM cells regulate glutamine and use it as a major energy source for their proliferation through the glutaminolysis process. Enzymes, such as glutaminase in glutaminolysis, can be targeted by small-molecule inhibitors, thus exhibiting promising anticancer properties. The resistance to glutaminolysis demands the development of new therapeutic molecules to overcome drug resistance. Herein, we have reported a novel library of constrained methanodibenzo[b,f][1,5]dioxocin derivatives as glutaminase (GLS) inhibitors and their anti-GBM potential. The library consisting of seven molecules was obtained through self-condensation of 2'-hydroxyacetophenones, out of which three molecules, namely compounds 3, 5, and 6, were identified with higher binding energy values ranging between -10.2 and -9.8 kcal/mol with GLS (PDB ID; 4O7D). Pharmacological validation of these compounds also showed a higher growth inhibition effect in GBM cells than the standard drug temozolomide (TMZ). The most promising compound, 6, obeyed Lipinski's rule of five and was identified to interact with key residues Arg307, Asp326, Lys328, Lys399, and Glu403 of GLS. This compound exhibited the best cytotoxic effect with IC50 values of 63 µM and 83 µM in LN229 and SNB19 cells, respectively. The potential activation of GLS by the best-constrained dibenzo[b,f][1,5]dioxocin in the tested series increased apoptosis via reactive oxygen species production in both GBM cells, and exhibited anti-migratory and anti-proliferative properties over time in both cell lines. Our results highlight the activation mechanism of a dibenzo[b,f][1,5]dioxocin from the structural basis and demonstrate that inhibition of glutaminolysis may facilitate the pharmacological intervention for GBM treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA