Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet B Neuropsychiatr Genet ; 195(2): e32956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37584268

RESUMO

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder caused by a 17p11.2 deletion or a pathogenic variant of the RAI1 gene, which lies within the 17p11.2 region. Various psychiatric and neurological disorders have been reported in SMS, with most literature focusing on children and adolescents. To provide an overview of the current knowledge on this topic in adults with SMS, we performed a comprehensive scoping review of the relevant literature. Our findings suggest that many manifestations that are common in childhood persist into adulthood. Neuropsychiatric manifestations in adults with SMS include intellectual disability, autism spectrum- and attention deficit hyperactivity disorder-related features, self-injurious and physical aggressive behaviors, sleep-wake disorders, and seizures. Findings of this review may facilitate optimization of management strategies in adults with SMS, and may guide future studies exploring late-onset psychiatric and neurological comorbidities in SMS.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Síndrome de Smith-Magenis , Adulto , Criança , Adolescente , Humanos , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patologia , Transativadores , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Agressão
2.
Brain Commun ; 3(4): fcab256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805998

RESUMO

The recent identification of NAA80/NAT6 as the enzyme that acetylates actins generated new insight into the process of post-translational actin modifications; however, the role of NAA80 in human physiology and pathology has not been clarified yet. We report two individuals from a single family harbouring a homozygous c.389T>C, p.(Leu130Pro) NAA80 genetic variant. Both individuals show progressive high-frequency sensorineural hearing loss, craniofacial dysmorphisms, developmental delay and mild proximal and axial muscle weakness. Based on the molecular structure, we predicted and confirmed the NAA80 c.389T>C, p.(Leu130Pro) variant to result in protein destabilization, causing severely decreased NAA80 protein availability. Concurrently, individuals exhibited a ∼50% decrease of actin acetylation. NAA80 individual derived fibroblasts and peripheral blood mononuclear cells showed increased migration, increased filopodia counts and increased levels of polymerized actin, in agreement with previous observations in NAA80 knock-out cells. Furthermore, the significant clinical overlap between NAA80 individuals and individuals with pathogenic variants in several actin subtypes reflects the general importance of controlled actin dynamics for the inner ear, brain and muscle. Taken together, we describe a new syndrome, caused by NAA80 genetic variants leading to decreased actin acetylation and disrupted associated molecular functions. Our work suggests a crucial role for NAA80-mediated actin dynamics in neuronal health, muscle health and hearing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA