RESUMO
In the last few years, many industrial sectors have generated and discharged large volumes of saline wastewater into the environment. In the present work, the electrochemical removal of nitrogen compounds from synthetic saline wastewater was investigated through a lab-scale experimental reactor. Experiments were carried out to examine the impacts of the operational parameters, such as electrolyte composition and concentration, applied current intensity, and initial ammoniacal nitrogen concentration, on the total nitrogen removal efficiency. Using NaCl as an electrolyte, the NTOT removal was higher than Na2SO4 and NaClO4; however, increasing the initial NaCl concentration over 250 mg·L-1 resulted in no benefits for the NTOT removal efficiency. A rise in the current intensity from 0.05 A to 0.15 A resulted in an improvement in NTOT removal. Nevertheless, a further increase to 0.25 A led to basically no enhancement of the efficiency. A lower initial ammoniacal nitrogen concentration resulted in higher removal efficiency. The highest NTOT removal (about 75%) was achieved after 90 min of treatment operating with a NaCl concentration of 250 mg·L-1 at an applied current intensity of 0.15 A and with an initial ammoniacal nitrogen concentration of 13 mg·L-1. The nitrogen degradation mechanism proposed assumes a series-parallel reaction system, with a first step in which NH4+ is in equilibrium with NH3. Moreover, the nitrogen molar balance showed that the main product of nitrogen oxidation was N2, but NO3- was also detected. Collectively, electrochemical treatment is a promising approach for the removal of nitrogen compounds from impacted saline wastewater.
RESUMO
In recent years, the discharge of various emerging pollutants, chemicals, and dyes in water and wastewater has represented one of the prominent human problems. Since water pollution is directly related to human health, highly resistant and emerging compounds in aquatic environments will pose many potential risks to the health of all living beings. Therefore, water pollution is a very acute problem that has constantly increased in recent years with the expansion of various industries. Consequently, choosing efficient and innovative wastewater treatment methods to remove contaminants is crucial. Among advanced oxidation processes, electrochemical oxidation (EO) is the most common and effective method for removing persistent pollutants from municipal and industrial wastewater. However, despite the great progress in using EO to treat real wastewater, there are still many gaps. This is due to the lack of comprehensive information on the operating parameters which affect the process and its operating costs. In this paper, among various scientific articles, the impact of operational parameters on the EO performances, a comparison between different electrochemical reactor configurations, and a report on general mechanisms of electrochemical oxidation of organic pollutants have been reported. Moreover, an evaluation of cost analysis and energy consumption requirements have also been discussed. Finally, the combination process between EO and photocatalysis (PC), called photoelectrocatalysis (PEC), has been discussed and reviewed briefly. This article shows that there is a direct relationship between important operating parameters with the amount of costs and the final removal efficiency of emerging pollutants. Optimal operating conditions can be achieved by paying special attention to reactor design, which can lead to higher efficiency and more efficient treatment. The rapid development of EO for removing emerging pollutants from impacted water and its combination with other green methods can result in more efficient approaches to face the pressing water pollution challenge. PEC proved to be a promising pollutants degradation technology, in which renewable energy sources can be adopted as a primer to perform an environmentally friendly water treatment.
RESUMO
Humic acids (HA) are promising green materials for water and wastewater treatment. They show a strong ability to sorb cationic and hydrophobic organic pollutants. Cationic compounds interact mainly by electrostatic interaction with the deprotonated carboxylic groups of HA. Other functional groups of HA such as quinones, may form covalent bonds with aromatic ammines or similar organic compounds. Computational and experimental works show that the interaction of HA with hydrophobic organics is mainly due to π-π interactions, hydrophobic effect and hydrogen bonding. Several works report that sorbing efficiency is related to the hydrophobicity of the sorbate. Papers about the interaction between organic pollutants and humic acids dissolved in solution, in the solid state and adsorbed onto solid particles, like aluminosilicates and magnetic materials, are reviewed and discussed. A short discussion of the thermodynamics and kinetics of the sorption process, with indication of the main mistakes reported in literature, is also given.
Assuntos
Substâncias Húmicas , Poluentes do Solo/química , Adsorção , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e HidrofílicasRESUMO
This research shows that carbon dioxide supercritical fluid (CO2-SF) is an emerging technology for the extraction of high interest compounds for applications in the manufacturing of pharmaceuticals, nutraceuticals, and cosmetics from microalgae. The purpose of this study is to recover fatty acids (FAs) and, more precisely, eicosapentaenoic acid (EPA) from Nannochloropsis gaditana biomass by CO2-SF extraction. In the paper, the effect of mechanical pre-treatment was evaluated with the aim of increasing FAs recovery. Extraction was performed at a pressure range of 250â»550 bars and a CO2 flow rate of 7.24 and 14.48 g/min, while temperature was fixed at 50 or 65 °C. The effect of these parameters on the extraction yield was assessed at each extraction cycle, 20 min each, for a total extraction time of 100 min. Furthermore, the effect of biomass loading on EPA recovery was evaluated. The highest EPA extraction yield, i.e., 11.50 mg/g, corresponding to 27.4% EPA recovery, was obtained at 65 °C and 250 bars with a CO2 flow rate of 7.24 g/min and 1.0 g biomass loading. The increased CO2 flow rate from 7.24 to 14.48 g/min enhanced the cumulative EPA recovery at 250 bars. The purity of EPA could be improved by biomass loading of 2.01 g, even if recovery was reduced.
Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Ácido Eicosapentaenoico/isolamento & purificação , Microalgas/química , Estramenópilas/química , Ácidos Graxos/isolamento & purificação , Pressão , TemperaturaRESUMO
Microalgae Dunaliella salina contains useful molecules such as ß-carotene and fatty acids (FAs), which are considered high value-added compounds. To extract these molecules, supercritical carbon dioxide was used at different operative conditions. The effects of mechanical pre-treatment (grinding speed at 0â»600 rpm; pre-treatment time of 2.5â»7.5 min) and operating parameters for extraction, such as biomass loading (2.45 and 7.53 g), pressure (100â»550 bars), temperature (50â»75 °C) and CO2 flow rate (7.24 and 14.48 g/min) by varying the extraction times (30â»110 min) were evaluated. Results showed that the maximum cumulative recovery (25.48%) of ß-carotene was achieved at 400 bars and 65 °C with a CO2 flow rate of 14.48 g/min, while the highest purity for stage (55.40%) was attained at 550 bars and 65 °C with a CO2 flow rate of 14.48 g/min. The maximum recovery of FAs, equal to 8.47 mg/g, was achieved at 550 bars and 75 °C with a CO2 flow rate of 14.48 g/min. Moreover, the lowest biomass loading (2.45 g) and the first extraction cycle (30 min) allowed the maximum extraction of ß-carotene and FAs.
Assuntos
Dióxido de Carbono/química , Ácidos Graxos/isolamento & purificação , Extração Líquido-Líquido/métodos , Microalgas/química , beta Caroteno/isolamento & purificação , Terra de Diatomáceas/química , Humanos , Pressão , Reologia , Extração em Fase Sólida/métodos , Temperatura , Fatores de TempoRESUMO
Lutein has several benefits for human health, playing an important role in the prevention of age-related macular degeneration (AMD), cataracts, amelioration of the first stages of atherosclerosis, and some types of cancer. In this work, the Scenedesmus almeriensis microalga was used as a natural source for the supercritical fluid (SF) extraction of lutein. For this purpose, the optimization of the main parameters affecting the extraction, such as biomass pre-treatment, temperature, pressure, and carbon dioxide (CO2) flow rate, was performed. In the first stage, the effect of mechanical pre-treatment (diatomaceous earth (DE) and biomass mixing in the range 0.25-1 DE/biomass; grinding speed varying between 0 and 600 rpm, and pre-treatment time changing from 2.5 to 10 min), was evaluated on lutein extraction efficiency. In the second stage, the influence of SF-CO2 extraction parameters such as pressure (25-55 MPa), temperature (50 and 65 °C), and CO2 flow rate (7.24 and 14.48 g/min) on lutein recovery and purity was investigated. The results demonstrated that by increasing temperature, pressure, and CO2 flow rate lutein recovery and purity were improved. The maximum lutein recovery (~98%) with purity of ~34% was achieved operating at 65 °C and 55 MPa with a CO2 flow rate of 14.48 g/min. Therefore, optimum conditions could be useful in food industries for lutein supplementation in food products.
Assuntos
Extração Líquido-Líquido , Luteína/isolamento & purificação , Scenedesmus/química , Biomassa , Carotenoides/química , Suplementos Nutricionais , Ácidos Graxos , Aditivos Alimentares/análise , Aditivos Alimentares/química , Lipídeos/química , Extração Líquido-Líquido/métodos , Luteína/química , Pressão , TemperaturaRESUMO
In this article, microalgae Nannochloropsis sp. was used for fatty acid (FA) extraction, using a supercritical fluid-carbon dioxide (SF-CO2) extraction method. This study investigated the influence of different pre-treatment conditions by varying the grinding speed (200-600 rpm), pre-treatment time (2.5-10 min), and mixing ratio of diatomaceous earth (DE) and Nannochloropsis sp. biomass (0.5-2.0 DE/biomass) on FAs extraction. In addition, the effect of different operating conditions, such as pressure (100-550 bar), temperature (50-75 °C), and CO2 flow rate (7.24 and 14.48 g/min) on eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) recovery, was analyzed. Experimental data evidenced that, keeping constant the extraction conditions, the pre-treatment step enhanced the FAs extraction yield up to 3.4 fold, thereby the maximum extracted amount of FAs (61.19 mg/g) was attained with the pre-treatment with a ratio of DE/biomass of 1 at 600 rpm for 5 min. Moreover, by increasing both SF-CO2 pressure and temperature, the selectivity towards EPA was enhanced, while intermediate pressure and lower pressure promoted DHA recovery. The highest amount of extracted EPA, i.e., 5.69 mg/g, corresponding to 15.59%, was obtained at 75 °C and 550 bar with a CO2 flow rate of 14.48 g/min, while the maximum amount of extracted DHA, i.e., ~0.12 mg/g, equal to 79.63%, was registered at 50 °C and 400 bar with a CO2 flow rate of 14.48 g/min. Moreover, the increased CO2 flow rate from 7.24 to 14.48 g/min enhanced both EPA and DHA recovery.
Assuntos
Dióxido de Carbono/química , Ácidos Graxos Ômega-3/isolamento & purificação , Estramenópilas/química , Biomassa , Cromatografia com Fluido Supercrítico , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Ácido Eicosapentaenoico/isolamento & purificação , TemperaturaRESUMO
Astaxanthin and lutein, antioxidants used in nutraceutics and cosmetics, can be extracted from several microalgal species. In this work, investigations on astaxanthin and lutein extraction from Haematococcus pluvialis (H. pluvialis) in the red phase were carried out by means of the supercritical fluid extraction (SFE) technique, in which CO2 supercritical fluid was used as the extracting solvent with ethanol as the co-solvent. The experimental activity was performed using a bench-scale reactor in semi-batch configuration with varying extraction times (20, 40, 60, and 80 min), temperatures (50, 65, and 80 °C) and pressures (100, 400, and 550 bar). Moreover, the performance of CO2 SFE with ethanol was compared to that without ethanol. The results show that the highest astaxanthin and lutein recoveries were found at 65 °C and 550 bar, with ~18.5 mg/g dry weight (~92%) astaxanthin and ~7.15 mg/g dry weight (~93%) lutein. The highest astaxanthin purity and the highest lutein purity were found at 80 °C and 400 bar, and at 65 °C and 550 bar, respectively.
Assuntos
Antioxidantes/isolamento & purificação , Clorofíceas/química , Cromatografia com Fluido Supercrítico/métodos , Luteína/isolamento & purificação , Microalgas/química , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/instrumentação , Etanol/química , Solventes/química , Xantofilas/isolamento & purificaçãoRESUMO
Haematococcus pluvialis microalgae in the red phase can produce significant amounts of astaxanthin, lutein, and fatty acids (FAs), which are valuable antioxidants in nutraceutics and cosmetics. Extraction of astaxanthin, lutein, and FAs from disrupted biomass of the H. pluvialis red phase using carbon dioxide (CO2) in supercritical fluid extraction (SFE) conditions was investigated using a bench-scale reactor in a semi-batch configuration. In particular, the effect of extraction time (20, 40, 60, 80, and 120 min), CO2 flow rate (3.62 and 14.48 g/min) temperature (50, 65, and 80 °C), and pressure (100, 400, and 550 bar.) was explored. The results show the maximum recovery of astaxanthin and lutein achieved were 98.6% and 52.3%, respectively, at 50 °C and 550 bars, while the maximum recovery of FAs attained was 93.2% at 65 °C and 550 bars.
Assuntos
Clorofíceas/metabolismo , Cromatografia com Fluido Supercrítico/métodos , Ácidos Graxos/isolamento & purificação , Luteína/isolamento & purificação , Microalgas/metabolismo , Biomassa , Dióxido de Carbono/química , Ácidos Graxos/metabolismo , Luteína/metabolismo , Xantofilas/isolamento & purificação , Xantofilas/metabolismoRESUMO
Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that could effectively replace fossil-based and non-biodegradable plastics. However, their production is currently limited by the high production costs, mainly due to the costly carbon sources used, low productivity and quality of the materials produced. A potential solution lies in utilizing cheap and renewable carbon sources as the primary feedstock during the biological production of PHAs, paving the way for a completely sustainable and economically viable process. In this review, the opportunities and challenges related to the production of polyhydroxyalkanoates using methane and volatile fatty acids (VFAs) as substrates were explored, with a focus on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The discussion reports the current knowledge about promising Type II methanotrophs, the impact of process parameters such as limiting nutrients, CH4:O2 ratio and temperature, the type of co-substrate and its concentration. Additionally, the strategies developed until now to enhance PHA production yields were also discussed.
RESUMO
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is a biobased and biodegradable polymer that could efficiently replace fossil-based plastics. However, its widespread deployment is slowed down by the high production cost. In this work, the techno-economic assessment of the process for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from low-cost substrates, such as methane and valeric acid derived from the anaerobic digestion of organic wastes, is proposed. Several strategies for cost abatement, such as the use of a mixed consortium and a line for reagent recycling during downstream, were adopted. Different scenarios in terms of production, from 100 to 100,000 t/y, were analysed, and, for each case, the effect of the reactor volume (small, medium and large size) on the selling price was assessed. In addition, the effect of biomass concentration was also considered. Results show that the selling price of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is minimum for a production plant with 100,000 t/y capacity, accounting for 18.4 /kg, and highly influenced by the biomass concentration since it can be reduced up to 8.6 /kg by increasing the total suspended solids from 5 to 30 g/L, This adjustment aligns the breakeven point of PHBV with the reported average commercial price.
Assuntos
Biomassa , Reatores Biológicos , Ácidos Graxos Voláteis , Metano , Poliésteres , Poli-Hidroxibutiratos , Metano/análise , Ácidos Graxos Voláteis/análise , BiopolímerosRESUMO
In this work, the potential of a synthetic coculture and a mixed methanotrophic consortium to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from renewable and waste-based feedstocks was assessed batchwise. Methylocystis parvuscocultivated with Rhodococcus opacus and a Methylocystis-enriched culture previously grown on methane were subjected to nutrient starvation in a medium enriched with valeric acid (30% w w-1 of Ctot) or with a VFAs mixture containing acetic, propionic, butyric, and valeric acids (15% w w-1 of Ctot) under a CH4:O2 or air atmosphere. For all test series, pH was adjusted to 7 after adding the cosubstrates, and a negligible substrate consumption or polymer production was considered the end point of the trial. Results showed that valeric acid promoted PHBV accumulation in both cultures regardless of the atmosphere. Interestingly, the mixture of VFAs supported PHBV accumulation only in the presence of methane. The highest PHBV contents for the coculture and the mixed consortium, equal to 73.7 ± 2.5% w w-1 and 49.6 ± 13% w w-1, respectively, were obtained with methane and the VFAs mixture. This study demonstrates the suitability of cocultures and biobased cosubstrates for the sustainable production of the biodegradable polymer PHBV.
RESUMO
Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-ß-hydroxybutyrate and poly-ß-hydroxybutyrate-co-ß-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.
Assuntos
Biodegradação Ambiental , Poliésteres , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Poliésteres/química , Solventes/química , Hidroxibutiratos/químicaRESUMO
The increasing need for biodegradable polymers demands efficient and environmentally friendly extraction methods. In this study, a simple and sustainable method for extracting polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-co-HV) from Methylocystis hirsuta and a mixed methanotrophic consortium with different biopolymer contents was presented. The extraction of biopolymers with 1,3-dioxolane was initially investigated by varying the biomass-to-solvent ratio (i.e., 1:2 w v-1, 1:4 w v-1, 1:6 w v-1, 1:8 w v-1 and 1:10 w v-1) and extraction time (6, 8 and 10 h) at the boiling point of the solvent and atmospheric pressure. Based on the results of the preliminary tests, and only for the most efficient biomass-to-solvent ratio, the extraction kinetics were also studied over a time interval ranging from 30 min to 6 h. For Methylocystis hirsuta, the investigation of the extraction time showed that the maximum extraction was reached after 30 min, with recovery yields of 87% and 75% and purities of 98.7% and 94% for PHB and PHB-co-HV, respectively. Similarly, the extraction of PHB and PHB-co-HV from a mixed methanotrophic strain yielded 88% w w-1 and 70% w w-1 recovery, respectively, with 98% w w-1 purity, at a biomass-to-solvent ratio of 6 in 30 min.
RESUMO
Wastewater from livestock farms contains high concentrations of suspended solids, organic contaminants, and nitrogen compounds, such as ammoniacal nitrogen. Discharging livestock effluents into water bodies without appropriate treatment leads to severe environmental pollution. Compared to conventional treatment methods, electrochemical oxidation exhibits higher nitrogen removal efficiencies. In the present work, the electrochemical removal of ammoniacal nitrogen from real livestock wastewater was investigated through a lab-scale reactor. Preliminary experiments were carried out to investigate the effects of different anode materials, including boron-doped diamond and iridium/ruthenium-coated titanium, on the total nitrogen removal efficiency using synthetic wastewater. Boron-doped diamond, a well-known non-active electrode, allowed to obtain 63.7 ± 1.21 % of total nitrogen degradation efficiency. However, the iridium/ruthenium-coated titanium electrode, belonging to the class of active anodes, showed a higher performance, achieving 78.8 ± 0.76 % contaminant degradation. Coupling iridium/ruthenium-coated titanium anode with a stainless-steel cathode improved the performance of the system, achieving even 96.2 ± 2.73 % of total nitrogen removal. The optimized cell configuration was used to treat livestock wastewater, resulting in the degradation of 67.0 ± 2.25 % of total nitrogen and 37.3 ± 0.68 % of total organic carbon when sodium chloride was added. At the end of the process, the ammonium content was completely removed, and only 17.7 ± 0.51 % of the initial nitrogen turned into nitrate. The results show that the proposed system is a promising approach to treating livestock wastewater by coupling high contaminant removal efficiencies with low operational costs. Anyway, further studies on process optimization with an emphasis on power requirements and electrode costs need to be carried out.
RESUMO
In this work, the potential of Methylocystis hirsuta to simultaneously use methane and volatile fatty acids mixtures for triggering PHBV accumulation was assessed for the first time batchwise. Biotic controls carried out with CH4 alone confirmed the inability of Methylocystis hirsuta to produce PHBV and achieved 71.2 ± 7 g m-3d-1 of PHB. Pure valeric acid and two synthetic mixtures simulating VFAs effluents from the anaerobic digestion of food waste at 35 °C (M1) and 55 °C (M2) were supplied to promote 3-HV inclusion. Results showed that pure valeric acid supported the highest polymer yields of 105.8 ± 9 g m-3d-1 (3-HB:3-HV=70:30). M1 mixtures led to a maximum of 103 ± 4 g m-3d-1 of PHBV (3-HB:3-HV=85:15), while M2 mixtures, which did not include valeric acid, showed no PHV synthesis. This suggested that the synthesis of PHBV from VFAs effluents depends on the composition of the mixtures, which can be tuned during the anaerobic digestion process.
Assuntos
Metano , Eliminação de Resíduos , Alimentos , Ácidos Graxos Voláteis , Hidroxibutiratos , Poli-HidroxibutiratosRESUMO
Bacterially produced polyhydroxyalkanoates are valuable substitutes for petrochemical plastics, but their current production capacities are very scarce. Producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV) from methane and odd-chain carbon fatty acids could make the production of this biodegradable polymer cost-effective. This study analyzes the main factors affecting methanotrophic growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation, simulating a pilot-scale process based on a double-stage approach. The effects of the nitrogen source and the oxygen partial pressure during a 20 day growth phase were studied; the cosubstrate concentration, the culture selected, and the methane partial pressure were investigated during the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production stage performed within 15 days under nutrient starvation. Methylocystis parvus OBBP and Methylosinus thricosporum OB3b reached the maximum growth productivities with ammonium as the nitrogen source and oxygen at high partial pressure. The simulation of the PHB-co-HV accumulation revealed that methanotrophs could better accumulate the polymer with low valeric acid concentrations. A methane-abundant gas stream (0.5 atm of methane) could increase process yields up to 0.32 kg m-3 d-1.
RESUMO
The pressing problem posed by plastic pollution has led to other, environmentally friendly alternatives, such as polyhydroxyalkanoates. This work proposes an innovative process to produce poly(3-hydroxybutyrate) by replacing expensive substrates, such as sugars, with methane. A two-step process was simulated: a first fermentation is performed in a continuous mode for 20 days to grow a strain belonging to the genus Methylocystis, while a second semi-continuous and nitrogen-limited fermentation is employed to induce the poly(3-hydroxybutyrate) accumulation within 12 days. The effects of the superficial gas velocity on the mass transfer and the poly(3-hydroxybutyrate) production yields were evaluated. Several scenarios were analyzed to optimize the geometry of the reactors and the methane utilization. The working volume of the reactors, as well as the presence of gas recycling stream, were shown to affect the global yields positively, while improving the aspect ratio from 8 to 19, with equal volume, lowered the fraction of poly(3-hydroxybutyrate) into the biomass by up to 37.5%.
Assuntos
Hidroxibutiratos , Metano , Ácido 3-Hidroxibutírico , Reatores Biológicos , PoliésteresRESUMO
BACKGROUND: Pressurised anaerobic digestion allows the production of biogas with a high content of methane and, at the same time, avoid the energy costs for the biogas upgrading and injection into the distribution grid. The technology carries potential, but the research faces practical constraints by a.o. the capital investment needed in high-pressure reactors and sensors and associated sampling limitations. In this work, the kinetic model of an autogenerative high-pressure anaerobic digestion of acetate, as the representative compound of the aceticlastic methanogenesis route, in batch configuration, is proposed to predict the dynamic performance of pressurised digesters and support future experimental work. The modelling of autogenerative high-pressure anaerobic digestion in batch configuration, which is not extensively studied and simulated in the present literature, was developed, calibrated, and validated by using experimental results available from the literature. RESULTS: Under high-pressure conditions, the assessment of the Monod maximum specific uptake rate, the half-saturation constant and the first-order decay rate was carried out, and the values of 5.9 kg COD kg COD-1 d-1, 0.05 kg COD m-3 and 0.02 d-1 were determined, respectively. By using the predicted values, excellent fittings of the final pressure, the CH4 molar fraction and the specific methanogenic yield calculation were obtained. Likewise, the variation in the gas-liquid mass transfer coefficient by several orders of magnitude showed negligible effects on the model predictive values in terms of methane molar fraction of the produced biogas, while the final pressure seemed to be slightly influenced. CONCLUSIONS: The proposed model allowed to estimate the Monod maximum specific uptake rate for acetate, the half-saturation rate for acetate and the first-order decay rate constant, which were comparable with literature values reported for well-studied methanogens under anaerobic digestion at atmospheric pressure. The methane molar fraction and the final pressure predicted by the model showed different responses towards the variation of the gas-liquid mass transfer coefficient since the former seemed not to be affected by the variation of the gas-liquid mass transfer coefficient; in contrast, the final pressure seemed to be slightly influenced. The proposed approach may also allow to potentially identify the methanogens species able to be predominant at high pressure.
RESUMO
The Hg(0) vapor adsorption experimental results on a novel sorbent obtained by impregnating a commercially available activated carbon (Darco G60 from BDH) with silver nitrate were reported. The study was performed by using a fundamental approach, in an apparatus at laboratory scale in which a synthetic flue gas, formed by Hg(0) vapors in a nitrogen gas stream, at a given temperature and mercury concentration, was flowed through a fixed bed of adsorbent material. Breakthrough curves and adsorption isotherms were obtained for bed temperatures of 90, 120 and 150 degrees C and for Hg(0) concentrations in the gas varying in the range of 0.8-5.0 mg/m3. The experimental gas-solid equilibrium data were used to evaluate the Langmuir parameters and the heat of adsorption. The experimental results showed that silver impregnated carbon was very effective to capture elemental mercury and the amount of mercury adsorbed by the carbon decreased as the bed temperature increased. In addition, to evaluate the possibility of adsorbent recovery, desorption was also studied. Desorption runs showed that both the adsorbing material and the mercury could be easily recovered, since at the end of desorption the residue on solid was almost negligible. The material balance on mercury and the constitutive equations of the adsorption phenomenon were integrated, leading to the evaluation of only one kinetic parameter which fits well both the experimentally determined breakthrough and desorption curves.