RESUMO
To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.
Assuntos
Arginina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Arginina/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Apoptose , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismoRESUMO
The survival of acute myeloid leukaemia (AML) patients aged over 60 has been suboptimal historically, whether they are treated using hypomethylating agents, low-dose cytarabine (LDAC) or venetoclax-based regimens. Progress is being made, however, for subgroups with favourable molecular or cytogenetic findings. Arginine metabolism plays a key role in AML pathophysiology. We report the only randomised study of LDAC with recombinant arginase BCT-100 versus LDAC alone in older AML patients unsuitable for intensive therapy. Eighty-three patients were randomised to the study. An overall response rate was seen in 19.5% (all complete remission [CR]) and 15% (7.5% each in CR and CR without evidence of adequate count recovery [CRi]) of patients in the LDAC+BCT-100 and LDAC arms respectively (odds ratio 0.73, confidence interval 0.23-2.33; p = 0.592). No significant difference in overall or median survival between treatment arms was seen. The addition of BCT-100 to LDAC was well tolerated.
Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Pessoa de Meia-Idade , Idoso , Arginase , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Polietilenoglicóis/uso terapêuticoRESUMO
Acute myeloid leukaemia (AML) creates an immunosuppressive environment to conventional T cells through Arginase 2 (ARG2)-induced arginine depletion. We identify that AML blasts release the acute phase protein serum amyloid A (SAA), which acts in an autocrine manner to upregulate ARG2 expression and activity, and promote AML blast viability. Following in vitro cross-talk invariant natural killer T (iNKT) cells become activated, upregulate mitochondrial capacity, and release IFN-γ. iNKT retain their ability to proliferate and be activated despite the low arginine AML environment, due to the upregulation of Large Neutral Amino Acid Transporter-1 (LAT-1) and Argininosuccinate Synthetase 1 (ASS)-dependent amino acid pathways, resulting in AML cell death. T cell proliferation is restored in vitro and in vivo. The capacity of iNKT cells to restore antigen-specific T cell immunity was similarly demonstrated against myeloid-derived suppressor cells (MDSCs) in wild-type and Jα18-/- syngeneic lymphoma-bearing models in vivo. Thus, stimulation of iNKT cell activity has the potential as an immunotherapy against AML or as an adjunct to boost antigen-specific T cell immunotherapies in haematological or solid cancers.
Assuntos
Leucemia Mieloide Aguda , Células Supressoras Mieloides , Células T Matadoras Naturais , Humanos , Proliferação de Células , ArgininaRESUMO
Chronic active Epstein-Barr virus (CAEBV) typically presents as persistent infectious mononucleosis-like disease and/or hemophagocytic lymphohistocytosis (HLH), reflecting ectopic Epstein-Barr virus (EBV) infection and lymphoproliferation of T and/or NK cells. Clinical behavior ranges from indolent, stable disease through to rapidly progressive, life-threatening disease. Although it is thought the chronicity and/or progression reflect an escape from immune control, very little is known about the phenotype and function of the infected cells vs coresident noninfected population, nor about the mechanisms that could underpin their evasion of host immune surveillance. To investigate these questions, we developed a multicolor flow cytometry technique combining phenotypic and functional marker staining with in situ hybridization for the EBV-encoded RNAs (EBERs) expressed in every infected cell. This allows the identification, phenotyping, and functional comparison of infected (EBERPOS) and noninfected (EBERNEG) lymphocyte subset(s) in patients' blood samples ex vivo. We have characterized CAEBV and HLH cases with monoclonal populations of discrete EBV-activated T-cell subsets, in some cases accompanied by EBV-activated NK-cell subsets, with longitudinal data on the infected cells' progression despite standard steroid-based therapy. Given that cytotoxic CD8+ T cells with relevant EBV antigen specificity were detectable in the blood of the best studied patient, we searched for means whereby host surveillance might be impaired. This revealed a unique feature in almost every patient with CAEBV studied: the presence of large numbers of myeloid-derived suppressor cells that exhibited robust inhibition of T-cell growth. We suggest that their influence is likely to explain the host's failure to contain EBV-positive T/NK-cell proliferation.
Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/virologia , Células Supressoras Mieloides/imunologia , Subpopulações de Linfócitos T/virologia , Adulto , Citometria de Fluxo/métodos , Herpesvirus Humano 4/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Monocytic myeloid-derived suppressor cells (M-MDSCs) are significantly expanded in the blood of colorectal cancer (CRC) patients. However, their presence and underlying mechanisms in the tumour microenvironment of CRC have not been examined in detail. METHODS: Tumour tissues and peripheral blood from CRC patients were analysed for the presence of M-MDSCs. The mechanisms of suppression were analysed by blocking pathways by which MDSCs abrogate T cell proliferation. Co-culture of CRC cells with monocytes were performed with and without cytokine blocking antibodies to determine the mechanism by which CRC cells polarise monocytes. Multi-spectral IHC was used to demonstrate the intra-tumoral location of M-MDSCs. RESULTS: Tumour tissues and blood of CRC patients contain M-MDSCs which inhibit T cell proliferation. Whilst inhibition of arginase and nitric oxide synthase 2 fail to rescue T cell proliferation, blockade of IL-10 released by these HLA-DR- cells abrogates the suppresivity of M-MDSCs. Tumour conditioned media (TCM) significantly reduces HLA-DR expression, increases IL-10 release from monocytes and causes them to become suppressive. TGF-ß is highly expressed in the TCM and accumulates in the plasma. TGF-ß reduces HLA-DR expression and drives monocyte immunosuppressivity. The invasive margin of CRC is enriched in CD14+ HLA-DR- cells in close proximity to T cells. CONCLUSIONS: Our study demonstrates the cross-talk between CRC cells, M-MDSCs and T cells. Characterisation of CRC M-MDSCs point to therapeutic avenues to target these cells in addition to TGF-ß blockade.
Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , Fator de Crescimento Transformador beta , Neoplasias Colorretais/metabolismo , Antígenos HLA-DR , Humanos , Interleucina-10/metabolismo , Monócitos , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Microambiente TumoralRESUMO
Hematological and solid cancers catabolize the semiessential amino acid arginine to drive cell proliferation. However, the resulting low arginine microenvironment also impairs chimeric antigen receptor T cells (CAR-T) cell proliferation, limiting their efficacy in clinical trials against hematological and solid malignancies. T cells are susceptible to the low arginine microenvironment because of the low expression of the arginine resynthesis enzymes argininosuccinate synthase (ASS) and ornithine transcarbamylase (OTC). We demonstrate that T cells can be reengineered to express functional ASS or OTC enzymes, in concert with different chimeric antigen receptors. Enzyme modifications increase CAR-T cell proliferation, with no loss of CAR cytotoxicity or increased exhaustion. In vivo, enzyme-modified CAR-T cells lead to enhanced clearance of leukemia or solid tumor burden, providing the first metabolic modification to enhance CAR-T cell therapies.
Assuntos
Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Neuroblastoma/terapia , Ornitina Carbamoiltransferase/metabolismo , Linfócitos T/transplante , Animais , Apoptose , Argininossuccinato Sintase/genética , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Engenharia Metabólica/métodos , Camundongos , Camundongos Nus , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ornitina Carbamoiltransferase/genética , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background The study determined the safety, pharmacokinetics/pharmacodynamics (PK/PD), and recommended Phase II dose of BCT-100 for arginine auxotrophic tumours in a non-Chinese population. Methods This is a Phase I, 3 + 3 dose-escalation, open-label, multi-centre study in two arginine auxotrophic cancers-Malignant Melanoma (MM) and Castration Resistant Prostate Cancer (CRPC). Patients were enrolled to receive weekly intravenous BCT-100. The dose cohorts were respectively 0.5 mg/kg, 1.0 mg/kg, 1.7 mg/kg and 2.7 mg/kg. Results There were 14 MM and 9 CRPC patients, 16 males and 7 females with a median age of 71. No dose-limiting toxicities were reported. Among all the AEs, 18 were drug-related (mostly were Grade 1). Although there were individual variations in PKs amongst the patients in each cohort, the median arginine level was maintained at 2.5 µM (lower limit of quantification) in all 4 cohorts of patients after the second BCT-100 injection. Therapeutic Arginine Depletion was found in the 1.7 and 2.7 mg/kg/week cohorts when anti-tumor activities were observed. The two cohorts had a similar AUC (20,947 and 19,614 h*µg/ml respectively). Since the 2.7 mg/kg/week cohort had a more sustained arginine depletion for 2 weeks, the 2.7 mg/kg/week dose is chosen as the future phase II dose. There were two complete remissions (1 MM & 1 CRPC), 1PR (MM) and 2 stable diseases with a disease control rate (CR + PR + SD) of 5/23 (22%). Conclusions BCT-100 is safe in a non-Chinese population and has anti-tumor activities in both MM and CRPC. Weekly BCT-100 at 2.7 mg/kg is defined as the optimal biological dose for future clinical phase II studies.
Assuntos
Antineoplásicos/uso terapêutico , Arginase/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Área Sob a Curva , Arginase/administração & dosagem , Arginase/efeitos adversos , Arginase/farmacocinética , Arginina/sangue , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacocinéticaRESUMO
Therapeutic approaches which aim to target Acute Myeloid Leukaemia through enhancement of patients' immune responses have demonstrated limited efficacy to date, despite encouraging preclinical data. Examination of AML patients treated with azacitidine (AZA) and vorinostat (VOR) in a Phase II trial, demonstrated an increase in the expression of Cancer-Testis Antigens (MAGE, RAGE, LAGE, SSX2 and TRAG3) on blasts and that these can be recognised by circulating antigen-specific T cells. Although the T cells have the potential to be activated by these unmasked antigens, the low arginine microenvironment created by AML blast Arginase II activity acts a metabolic brake leading to T cell exhaustion. T cells exhibit impaired proliferation, reduced IFN-γ release and PD-1 up-regulation in response to antigen stimulation under low arginine conditions. Inhibition of arginine metabolism enhanced the proliferation and cytotoxicity of anti-NY-ESO T cells against AZA/VOR treated AML blasts, and can boost anti-CD33 Chimeric Antigen Receptor-T cell cytotoxicity. Therefore, measurement of plasma arginine concentrations in combination with therapeutic targeting of arginase activity in AML blasts could be a key adjunct to immunotherapy.
Assuntos
Antígenos de Neoplasias/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Arginase/antagonistas & inibidores , Arginina/sangue , Leucemia Mieloide/terapia , Doença Aguda , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Arginase/sangue , Arginase/metabolismo , Arginina/metabolismo , Azacitidina/administração & dosagem , Humanos , Imunoterapia/métodos , Células K562 , Leucemia Mieloide/imunologia , Leucemia Mieloide/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Vorinostat/administração & dosagemRESUMO
A boy with central nervous system relapse of Burkitt leukemia developed fever and neurologic symptoms and cognitive impairment. He had received multi-drug chemotherapy including rituximab. Enterovirus (EV) was detected in cerebrospinal fluid by polymerase chain reaction, and magnetic resonance imaging findings were consistent with viral infection. The patient was treated with intravenous immunoglobulin and within 1 month cleared his EV. Rituximab can cause a profound B-cell deficiency predisposing patients to infections including EV encephalitis. This is the first report of enteroviral encephalitis in a child undergoing treatment for lymphoma with rituximab and suggests the need to watch for this complication of therapy.
Assuntos
Linfoma de Burkitt , Neoplasias do Sistema Nervoso Central , Encefalite Viral , Infecções por Enterovirus , Enterovirus/genética , Rituximab/efeitos adversos , Linfoma de Burkitt/líquido cefalorraquidiano , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Linfoma de Burkitt/virologia , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/virologia , Pré-Escolar , Encefalite Viral/líquido cefalorraquidiano , Encefalite Viral/induzido quimicamente , Encefalite Viral/genética , Infecções por Enterovirus/líquido cefalorraquidiano , Infecções por Enterovirus/induzido quimicamente , Infecções por Enterovirus/genética , Humanos , Masculino , Rituximab/administração & dosagemRESUMO
Hemophagocytic lymphohistiocytosis (HLH) is a rare and often fatal syndrome of abnormal T-cell activation and cytokine production, which can be familial or secondary in nature. Although HLH can occur concomitantly with lymphomas, the development of HLH alongside Hodgkin lymphoma in children is unusual. Here we report the diagnostic evaluation and clinical course of 2 pediatric cases of HLH secondary to lymphocyte-depleted classic Hodgkin lymphoma. These cases highlight the need to be vigilant for this rare presentation and the difficulties in managing these patients.
Assuntos
Doença de Hodgkin/complicações , Linfo-Histiocitose Hemofagocítica/etiologia , Criança , Gerenciamento Clínico , Doença de Hodgkin/diagnóstico , Humanos , Linfócitos/patologia , Linfo-Histiocitose Hemofagocítica/diagnósticoRESUMO
Arginine is a semi-essential amino acid that plays a key role in cell survival and proliferation in normal and malignant cells. BCT-100, a pegylated (PEG) recombinant human arginase, can deplete arginine and starve malignant cells of the amino acid. Acute lymphoblastic leukemia (ALL) is the most common cancer of childhood, yet for patients with high risk or relapsed disease prognosis remains poor. We show that BCT-100 is cytotoxic to ALL blasts from patients in vitro by necrosis, and is synergistic in combination with dexamethasone. Against ALL xenografts, BCT-100 leads to a reduction in ALL engraftment and a prolongation of survival. ALL blasts express the arginine transporter CAT-1, yet the majority of blasts are arginine auxotrophic due to deficiency in either argininosuccinate synthase (ASS) or ornithine transcarbamylase (OTC). Although endogenous upregulation or retroviral transduced increases in ASS or OTC may promote ALL survival under moderately low arginine conditions, expression of these enzymes cannot prevent BCT-100 cytotoxicity at arginine depleting doses. RNA-sequencing of ALL blasts and supporting stromal cells treated with BCT-100 identifies a number of candidate pathways which are altered in the presence of arginine depletion. Therefore, BCT-100 provides a new clinically relevant therapeutic approach to target arginine metabolism in ALL.
Assuntos
Antineoplásicos/farmacologia , Arginase/farmacologia , Arginina/metabolismo , Metaboloma/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Recombinantes/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/farmacologia , Sinergismo Farmacológico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Acute myeloid leukemia (AML) is one of the most common acute leukemias in adults and children, yet significant numbers of patients relapse and die of disease. In this study, we identify the dependence of AML blasts on arginine for proliferation. We show that AML blasts constitutively express the arginine transporters CAT-1 and CAT-2B, and that the majority of newly diagnosed patients' blasts have deficiencies in the arginine-recycling pathway enzymes argininosuccinate synthase and ornithine transcarbamylase, making them arginine auxotrophic. BCT-100, a pegylated human recombinant arginase, leads to a rapid depletion in extracellular and intracellular arginine concentrations, resulting in arrest of AML blast proliferation and a reduction in AML engraftment in vivo. BCT-100 as a single agent causes significant death of AML blasts from adults and children, and acts synergistically in combination with cytarabine. Using RNA sequencing, 20 further candidate genes which correlated with resistance have been identified. Thus, AML blasts are dependent on arginine for survival and proliferation, as well as depletion of arginine with BCT-100 of clinical value in the treatment of AML.
Assuntos
Arginase/uso terapêutico , Arginina/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Adolescente , Idoso , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Citarabina/uso terapêutico , Terapia Enzimática , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Recombinantes/uso terapêutico , Células Tumorais Cultivadas , Adulto JovemRESUMO
Renewed interest in the use of therapeutic enzymes combined with an improved knowledge of cancer cell metabolism, has led to the translation of several arginine depletion strategies into early phase clinical trials. Arginine auxotrophic tumors are reliant on extracellular arginine, due to the downregulation of arginosuccinate synthetase or ornithine transcarbamylase-key enzymes for intracellular arginine recycling. Engineered arginine catabolic enzymes such as recombinant human arginase (rh-Arg1-PEG) and arginine deiminase (ADI-PEG) have demonstrated cytotoxicity against arginine auxotrophic tumors. In this review, we discuss the molecular events triggered by extracellular arginine depletion that contribute to tumor cell death.
Assuntos
Antineoplásicos/uso terapêutico , Arginina/metabolismo , Terapia Enzimática , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Arginase/uso terapêutico , Proliferação de Células , Sobrevivência Celular , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Terapia Enzimática/métodos , Humanos , Hidrolases/uso terapêutico , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias/enzimologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacosRESUMO
A recent case of advanced, recurrent juvenile nasopharyngeal angiofibroma (JNA) at our institution has highlighted the limited evidence regarding adjunctive treatment. We present the case of a 10-year-old boy who is the first to undergo multiple-staged surgical resections alongside vincristine treatment. We performed a review of the literature analyzing the roles of radiation therapy, cytotoxic drugs, and novel targeted agents in JNA relapse. Small cohort studies suggest radiotherapy and flutamide are the most rational treatment options for residual and recurrent JNA. Our review highlights the need for further research into the management of primary and recurrent JNA.
Assuntos
Angiofibroma/terapia , Quimioterapia Adjuvante/métodos , Neoplasias Nasofaríngeas/terapia , Recidiva Local de Neoplasia/terapia , Procedimentos Cirúrgicos Otorrinolaringológicos/métodos , Angiofibroma/patologia , Antineoplásicos/administração & dosagem , Criança , Humanos , Masculino , Neoplasias Nasofaríngeas/patologia , Cirurgia Endoscópica por Orifício Natural , Recidiva Local de Neoplasia/patologia , Vincristina/administração & dosagemRESUMO
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.
Assuntos
Arginase/fisiologia , Tolerância Imunológica , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral/imunologia , Animais , Arginase/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/fisiologia , Transplante Heterólogo , Evasão Tumoral/fisiologia , Microambiente Tumoral/fisiologiaRESUMO
Background: The survival for many children with relapsed/refractory cancers remains poor despite advances in therapies. Arginine metabolism plays a key role in the pathophysiology of a number of pediatric cancers. We report the first in child study of a recombinant human arginase, BCT-100, in children with relapsed/refractory hematological, solid or CNS cancers. Procedure: PARC was a single arm, Phase I/II, international, open label study. BCT-100 was given intravenously over one hour at weekly intervals. The Phase I section utilized a modified 3 + 3 design where escalation/de-escalation was based on both the safety profile and the complete depletion of arginine (defined as adequate arginine depletion; AAD <8µM arginine in the blood after 4 doses of BCT-100). The Phase II section was designed to further evaluate the clinical activity of BCT-100 at the pediatric RP2D determined in the Phase I section, by recruitment of patients with pediatric cancers into 4 individual groups. A primary evaluation of response was conducted at eight weeks with patients continuing to receive treatment until disease progression or unacceptable toxicity. Results: 49 children were recruited globally. The Phase I cohort of the trial established the Recommended Phase II Dose of 1600U/kg iv weekly in children, matching that of adults. BCT-100 was very well tolerated. No responses defined as a CR, CRi or PR were seen in any cohort within the defined 8 week primary evaluation period. However a number of these relapsed/refractory patients experienced prolonged radiological SD. Conclusion: Arginine depletion is a clinically safe and achievable strategy in children with cancer. The RP2D of BCT-100 in children with relapsed/refractory cancers is established at 1600U/kg intravenously weekly and can lead to sustained disease stability in this hard to treat population. Clinical trial registration: EudraCT, 2017-002762-44; ISRCTN, 21727048; and ClinicalTrials.gov, NCT03455140.
RESUMO
Cancer cells take up amino acids from the extracellular space to drive cell proliferation and viability. Similar mechanisms are applied by immune cells, resulting in the competition between conventional T cells, or indeed chimeric antigen receptor (CAR) T cells and tumor cells, for the limited availability of amino acids within the environment. We demonstrate that T cells can be re-engineered to express SLC7A5 or SLC7A11 transmembrane amino acid transporters alongside CARs. Transporter modifications increase CAR T-cell proliferation under low tryptophan or cystine conditions with no loss of CAR cytotoxicity or increased exhaustion. Transcriptomic and phenotypic analysis reveals that downstream, SLC7A5/SLC7A11-modified CAR T cells upregulate intracellular arginase expression and activity. In turn, we engineer and phenotype a further generation of CAR T cells that express functional arginase 1/arginase 2 enzymes and have enhanced CAR T-cell proliferation and antitumor activity. Thus, CAR T cells can be adapted to the amino acid metabolic microenvironment of cancer, a hitherto recognized but unaddressed barrier for successful CAR T-cell therapy.
Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Arginase/genética , Arginase/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/metabolismo , Aminoácidos/metabolismo , Microambiente TumoralRESUMO
Despite significant improvements in treatment and survival in paediatric cancers, outcomes for children with brain tumours remain poor. Novel therapeutic approaches are needed to improve survival and quality of survival. Extracellular arginine dependency (auxotrophy) has been recognised in several tumours as a potential therapeutic target. This dependency is due to the inability of cancer cells to recycle or synthesise intracellular arginine through the urea cycle pathway compared to normal cells. Whilst adult glioblastoma exhibits this dependency, the expression of the arginine pathway enzymes has not been delineated in paediatric brain tumours. We used immunohistochemical (IHC) methods to stain for arginine pathway enzymes in paediatric high-grade glioma (pHGG), low-grade glioma (pLGG), ependymoma (EPN), and medulloblastoma (MB) tumour tissue microarrays (TMAs). The antibodies detected protein expression of the metaboliser arginase (Arg1 and Arg2); recycling enzymes ornithine transcarbamoylase (OTC), argininosuccinate synthetase (ASS1), and argininosuccinate lyase (ASL); and the transporter SLC7A1. Deficiency of OTC, ASS1, and ASL was seen in 87.5%, 94%, and 79% of pHGG samples, respectively, consistent with an auxotrophic signature. Similar result was obtained in pLGG with 96%, 93%, and 91% of tumours being deficient in ASL, ASS1, and OTC, respectively. 79%, 88%, and 85% of MB cases were ASL, ASS1, and OTC deficient whilst ASL and OTC were deficient in 57% and 91% of EPN samples. All tumour types highly expressed SLC7A1 and Arginase, with Arg2 being the main isoform, demonstrating that they could transport and utilise arginine. Our results show that pHGG, pLGG, EPN, and MB demonstrate arginine auxotrophy based on protein expression and are likely to be susceptible to arginine depletion. Pegylated arginase (BCT-100) is currently in phase I/II trials in relapsed pHGG. Our results suggest that therapeutic arginine depletion may also be useful in other tumour types and IHC analysis of patient tumour samples could help identify patients likely to benefit from this treatment.
Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioma , Meduloblastoma , Adulto , Arginase/genética , Arginina , Argininossuccinato Liase , Neoplasias Encefálicas/genética , Criança , Ependimoma , Glioma/genética , Humanos , Ornitina CarbamoiltransferaseRESUMO
Objectives: Recombinant granulocyte colony-stimulating factor (G-CSF) is frequently administered to patients with cancer to enhance granulocyte recovery post-chemotherapy. Clinical trials have also used G-CSF to modulate myeloid cell function in pregnancy and inflammatory diseases. Although the contribution of G-CSF to expanding normal granulocytes is well known, the effect of this cytokine on the phenotype and function of immunosuppressive granulocytic cells remains unclear. Here, we investigate the impact of physiological and iatrogenic G-CSF on an as yet undescribed granulocyte phenotype and ensuing outcome on T cells in the settings of cancer and pregnancy. Methods: Granulocytes from patients treated with recombinant G-CSF, patients with late-stage cancer and women enrolled on a trial of recombinant G-CSF were phenotyped by flow cytometry. The ability and mechanism of polarised granulocytes to suppress T-cell proliferation were assessed by cell proliferation assays, flow cytometry and ELISA. Results: We observed that G-CSF leads to a significant upregulation of CD14 expression on CD15+ granulocytes. These CD15+CD14+ cells are identified in the blood of patients with patients undergoing neutrophil mobilisation with recombinant G-CSF, and physiologically in women early in pregnancy or in those treated as a part of a clinical trial. Immunohistochemistry of tumor tissue or placental tissue identified the expression of G-CSF. The G-CSF upregulates the release of reactive oxygen species (ROS) in CD15+CD14+ cells leading to the suppression of T-cell proliferation. Conclusions: G-CSF induces a population of ROS+ immunosuppressive CD15+CD14+ granulocytes. Strategies for how recombinant G-CSF can be scheduled to reduce effects on T-cell therapies should be developed in future clinical studies.