Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387400

RESUMO

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
J Enzyme Inhib Med Chem ; 37(1): 2382-2394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050846

RESUMO

Inhibition of c-Src is considered one of the most studied approaches to cancer treatment, with several heterocyclic compounds approved during the last 15 years as chemotherapeutic agents. Starting from the biological evaluation of an in-house collection of small molecules, indolinone was selected as the most promising scaffold. In this work, several functionalised indolinones were synthesised and their inhibitory potency and cytotoxic activity were assayed. The pharmacological profile of the most active compounds, supported by molecular modelling studies, revealed that the presence of an amino group increased the affinity towards the ATP-binding site of c-Src. At the same time, bulkier derivatizations seemed to improve the interactions within the enzymatic pocket. Overall, these data represent an early stage towards the optimisation of new, easy-to-be functionalised indolinones as potential c-Src inhibitors.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Antineoplásicos/química , Simulação de Acoplamento Molecular , Oxindóis , Proteínas Tirosina Quinases , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555657

RESUMO

G-quadruplexes are nucleotide sequences present in the promoter region of numerous oncogenes, having a key role in the suppression of gene transcription. Recently, the binding of anthraquinones from Aloe vera to G-quadruplex structures has been studied through various physico-chemical techniques. Intrigued by the reported results, we investigated the affinity of aloe emodin, aloe emodin-8-glucoside, and aloin to selected G-quadruplex nucleotide sequences by NMR spectroscopy. The structural determinants for the formation of the ligand/nucleotide complexes were elucidated and a model of the interactions between the tested compounds and C-Kit and c-Myc G-quadruplex DNA structures was built by integrated NMR and molecular modeling studies. Overall, the obtained results confirmed and implemented the previously reported findings, pointing out the complementarity of the different approaches and their contribution to a more detailed overview of the ligand/nucleotide complex formation. Furthermore, the proposed models of interaction could pave the way to the design of new nature-derived compounds endowed with increased G-quadruplex stabilizing activity.


Assuntos
Aloe , Quadruplex G , Aloe/química , Ligantes , Antraquinonas , Proteínas Proto-Oncogênicas c-kit/genética , Nucleotídeos
4.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897968

RESUMO

The enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter was recently identified. In this study, we explore the interaction of known G-quadruplex binders with the G-quadruplex structure found in the PARP gene promoter region. The results obtained by NMR, CD, and fluorescence titration, also confirmed by molecular modeling studies, demonstrate a variety of different binding modes with small stabilization of the G-quadruplex sequence located at the PARP1 promoter. Surprisingly, only pyridostatin produces a strong stabilization of the G-quadruplex-forming sequence. This evidence makes the identification of a proper (3+1) stabilizing ligand a challenging goal for further investigation.


Assuntos
Quadruplex G , Dicroísmo Circular , Reparo do DNA , Ligantes , Regiões Promotoras Genéticas
5.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566141

RESUMO

G-quadruplexes are secondary structures originating from nucleic acid regions rich in guanines, which are well known for their involvement in gene transcription and regulation and DNA damage repair. In recent studies from our group, kynurenic acid (KYNA) derivative 1 was synthesized and found to share the structural features typical of G-quadruplex binders. Herein, structural modifications were conducted on this scaffold in order to assist the binding with a G-quadruplex, by introducing charged hydrophilic groups. The antiproliferative activity of the new analogues was evaluated on an IGROV-1 human ovarian cancer cell line, and the most active compound, compound 9, was analyzed with NMR spectrometry in order to investigate its binding mode with DNA. The results indicated that a weak, non-specific interaction was set with duplex nucleotides; on the other hand, titration in the presence of a G-quadruplex from human telomere d(TTAGGGT)4 showed a stable, although not strong, interaction at the 3'-end of the nucleotidic sequence, efficiently assisted by salt bridges between the quaternary nitrogen and the external phosphate groups. Overall, this work can be considered a platform for the development of a new class of potential G-quadruplex stabilizing molecules, confirming the crucial role of a planar system and the ability of charged nitrogen-containing groups to facilitate the binding to G-quadruplex grooves and loops.


Assuntos
Quadruplex G , Ácido Cinurênico , DNA/química , Humanos , Nitrogênio , Telômero
6.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204214

RESUMO

Curaxins and especially the second-generation derivative curaxin CBL0137 have important antitumor activities in multiple cancers such as glioblastoma, melanoma and others. Although most of the authors suggest that their mechanism of action comes from the activation of p53 and inactivation of NF-kB by targeting FACT, there is evidence supporting the involvement of DNA binding in their antitumor activity. In this work, the DNA binding properties of curaxin CBL0137 with model quadruplex DNA oligomers were studied by 1H NMR, CD, fluorescence and molecular modeling. We provided molecular details of the interaction of curaxin with two G-quadruplex structures, the single repeat of human telomere d(TTAGGGT)4 and the c-myc promoter Pu22 sequence. We also performed 1H and 31P NMR experiments were also performed in order to investigate the interaction with duplex DNA models. Our data support the hypothesis that the interaction of curaxin with G-quadruplex may provide a novel insight into the DNA-binding properties of CBL0137, and it will be helpful for the design of novel selective DNA-targeting curaxin analogues.


Assuntos
Carbazóis/química , DNA/química , Quadruplex G , Substâncias Macromoleculares/química , Carbazóis/farmacologia , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Humanos , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Telômero/genética , Telômero/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918510

RESUMO

The increasing emergence of fungicide-resistant pathogens requires urgent solutions for crop disease management. Here, we describe a structural investigation of new fungicides obtained by combining strobilurin and succinate dehydrogenase inhibitor pharmacophores. We identified compounds endowed with very good activity against wild-type Pyricularia oryzae, combined in some cases with promising activity against strobilurin-resistant strains. The first three-dimensional model of P. oryzae cytochrome bc1 complex containing azoxystrobin as a ligand was developed. The model was validated with a set of commercially available strobilurins, and it well explains both the resistance mechanism to strobilurins mediated by the mutation G143A and the activity of metyltetraprole against strobilurin-resistant strains. The obtained results shed light on the key recognition determinants of strobilurin-like derivatives in the cytochrome bc1 active site and will guide the further rational design of new fungicides able to overcome resistance caused by G143A mutation in the rice blast pathogen.


Assuntos
Ascomicetos , Farmacorresistência Fúngica , Fungicidas Industriais/síntese química , Estrobilurinas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Succinato Desidrogenase/antagonistas & inibidores
8.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34445442

RESUMO

DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme.


Assuntos
Quadruplex G , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/química , Regiões Promotoras Genéticas , Benzimidazóis/química , Benzimidazóis/farmacologia , DNA/química , DNA/efeitos dos fármacos , Humanos , Indazóis/química , Indazóis/farmacologia , Espectroscopia de Ressonância Magnética , Ftalazinas/química , Ftalazinas/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
9.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946674

RESUMO

The natural stilbenoid dehydro-δ-viniferin, containing a benzofuran core, has been recently identified as a promising antimicrobial agent. To define the structural elements relevant to its activity, we modified the styryl moiety, appended at C5 of the benzofuran ring. In this paper, we report the construction of stilbenoid-derived 2,3-diaryl-5-substituted benzofurans, which allowed us to prepare a focused collection of dehydro-δ-viniferin analogues. The antimicrobial activity of the synthesized compounds was evaluated against S. aureus ATCC29213. The simplified analogue 5,5'-(2-(4-hydroxyphenyl)benzofuran-3,5-diyl)bis(benzene-1,3-diol), obtained in three steps from 4-bromo-2-iodophenol (63% overall yield), emerged as a promising candidate for further investigation (MIC = 4 µg/mL).


Assuntos
Antibacterianos , Benzofuranos , Resorcinóis , Staphylococcus aureus/crescimento & desenvolvimento , Estilbenos , Antibacterianos/química , Antibacterianos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Testes de Sensibilidade Microbiana , Resorcinóis/química , Resorcinóis/farmacologia , Estilbenos/química , Estilbenos/farmacologia
10.
Bioorg Chem ; 104: 104253, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920362

RESUMO

Atypical retinoids (AR) or retinoid-related molecules (RRMs) represent a promising class of antitumor compounds. Among AR, E-3-(3'-adamantan-1-yl-4'-hydroxybiphenyl-4-yl)acrylic acid (adarotene), has been extensively investigated. In the present work we report the results of our efforts to develop new adarotene-related atypical retinoids endowed also with POLA1 inhibitory activity. The effects of the synthesized compounds on cell growth were determined on a panel of human and hematological cancer cell lines. The most promising compounds showed antitumor activity against several tumor histotypes and increased cytotoxic activity against an adarotene-resistant cell line, compared to the parent molecule. The antitumor activity of a selected compound was evaluated on HT-29 human colon carcinoma and human mesothelioma (MM487) xenografts. Particularly significant was the in vivo activity of the compound as a single agent compared to adarotene and cisplatin, against pleural mesothelioma MM487. No reduction of mice body weight was observed, thus suggesting a higher tolerability with respect to the parent compound adarotene.


Assuntos
Antineoplásicos/farmacologia , DNA Polimerase I/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Retinoides/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , DNA Polimerase I/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Retinoides/síntese química , Retinoides/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245220

RESUMO

In a recent study, we investigated the antimicrobial activity of a collection of resveratrol-derived monomers and dimers against a series of foodborne pathogens. Out of the tested molecules, dehydro-δ-viniferin and dehydro-ε-viniferin emerged as the most promising derivatives. To define the structural elements essential to the antimicrobial activity against the foodborne pathogen L. monocytogenes Scott A as a model Gram-positive microorganism, the synthesis of a series of simplified benzofuran-containing derivatives was carried out. The systematic removal of the aromatic moieties of the parent molecules allowed a deeper insight into the most relevant structural features affecting the activity. While the overall structure of compound 1 could not be altered without a substantial loss of antimicrobial activity, the structural simplification of compound 2 (minimal inhibitory concentration (MIC) 16 µg/mL, minimal bactericidal concentration (MBC) >512 µg/mL) led to the analogue 7 with increased activity (MIC 8 µg/mL, MBC 64 µg/mL).


Assuntos
Antibacterianos/química , Benzofuranos/química , Listeria monocytogenes/efeitos dos fármacos , Resorcinóis/química , Estilbenos/química , Antibacterianos/farmacologia , Benzofuranos/síntese química , Benzofuranos/farmacologia , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Resorcinóis/farmacologia , Resveratrol/química , Resveratrol/farmacologia , Pele/efeitos dos fármacos , Estilbenos/farmacologia
12.
Molecules ; 25(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036496

RESUMO

The high incidence of fungal pathogens has become a global issue for crop protection. A promising strategy to control fungal plant infections is based on the use of nature-inspired compounds. The cytochrome bc1 complex is an essential component of the cellular respiratory chain and is one of the most important fungicidal targets. Natural products have played a crucial role in the discovery of cytochrome bc1 inhibitors, as proven by the development of strobilurins, one of the most important classes of crop-protection agents, over the past two decades. In this review, we summarize advances in the exploration of natural product scaffolds for the design and development of new bc1 complex inhibitors. Particular emphasis is given to molecular modeling-based approaches and structure-activity relationship (SAR) studies performed to improve the stability and increase the potency of natural precursors. The collected results highlight the versatility of natural compounds and provide an insight into the potential development of nature-inspired derivatives as antifungal agents.


Assuntos
Antifúngicos/química , Estrobilurinas/química , Complexo III da Cadeia de Transporte de Elétrons/química , Relação Estrutura-Atividade
13.
Molecules ; 25(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824454

RESUMO

A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been the cause of a recent global pandemic. The highly contagious nature of this life-threatening virus makes it imperative to find therapies to counteract its diffusion. The main protease (Mpro) of SARS-CoV-2 is a promising drug target due to its indispensable role in viral replication inside the host. Using a combined two-steps approach of virtual screening and molecular docking techniques, we have screened an in-house collection of small molecules, mainly composed of natural and nature-inspired compounds. The molecules were selected with high structural diversity to cover a wide range of chemical space into the enzyme pockets. Virtual screening experiments were performed using the blind docking mode of the AutoDock Vina software. Virtual screening allowed the selection of structurally heterogeneous compounds capable of interacting effectively with the enzymatic site of SARS-CoV-2 Mpro. The compounds showing the best interaction with the protein were re-scored by molecular docking as implemented in AutoDock, while the stability of the complexes was tested by molecular dynamics. The most promising candidates revealed a good ability to fit into the protein binding pocket and to reach the catalytic dyad. There is a high probability that at least one of the selected scaffolds could be promising for further research.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Produtos Biológicos/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , COVID-19 , Proteínas M de Coronavírus , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Proteínas da Matriz Viral/antagonistas & inibidores , Tratamento Farmacológico da COVID-19
14.
Int J Mol Sci ; 20(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527404

RESUMO

Heat Shock Protein 90 (Hsp90) chaperone interacts with a broad range of client proteins involved in cancerogenesis and cancer progression. However, Hsp90 inhibitors were unsuccessful as anticancer agents due to their high toxicity, lack of selectivity against cancer cells and extrusion by membrane transporters responsible for multidrug resistance (MDR) such as P-glycoprotein (P-gp). Recognizing the potential of new compounds to inhibit P-gp function and/or expression is essential in the search for effective anticancer drugs. Eleven Hsp90 inhibitors containing an isoxazolonaphtoquinone core were synthesized and evaluated in two MDR models comprised of sensitive and corresponding resistant cancer cells with P-gp overexpression (human non-small cell lung carcinoma and colorectal adenocarcinoma). We investigated the effect of Hsp90 inhibitors on cell growth inhibition, P-gp activity and P-gp expression. Structure-activity relationship analysis was performed in respect to cell growth and P-gp inhibition. Compounds 5, 7, and 9 directly interacted with P-gp and inhibited its ATPase activity. Their potential P-gp binding site was identified by molecular docking studies. In addition, these compounds downregulated P-gp expression in MDR colorectal carcinoma cells, showed good relative selectivity towards cancer cells, while compound 5 reversed resistance to doxorubicin and paclitaxel in concentration-dependent manner. Therefore, compounds 5, 7 and 9 could be promising candidates for treating cancers with P-gp overexpression.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
15.
Int J Mol Sci ; 20(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590335

RESUMO

The stabilization of G-quadruplex DNA structures by small molecules with affinity to oncogene promoters has emerged as a promising anticancer strategy, due to a potential role in gene expression regulation. We explored the ability of BMH-21 (1) and its analogue BA-41 (2) to bind the G-quadruplex structure present in the c-KIT promoter by biophysical methods and molecular modeling. We provide evidence that both compounds interact with the c-KIT 21-mer sequence. The stable monomeric intramolecular parallel G-quadruplex obtained by the mutation of positions 12 and 21 allowed the precise determination of the binding mode by NMR and molecular dynamics studies. Both compounds form a complex characterized by one ligand molecule positioned over the tetrad at the 3'-end, stabilized by an extensive network of π-π interactions. The binding constants (Kb) obtained with fluorescence are similar for both complexes (around 106 M-1). Compound BA-41 (2) showed significant antiproliferative activity against a human lymphoma cell line, SU-DHL4, known to express substantial levels of c-KIT. However, the partial inhibition of c-KIT expression by Western blot analysis suggested that the interaction of compound 2 with the c-KIT promoter is not the primary event and that multiple effects provide a contribution as determinants of biological activity.


Assuntos
Quadruplex G , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , RNA Polimerase I/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1862(3): 615-629, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29229300

RESUMO

BACKGROUND: Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. METHODS: The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. RESULTS AND CONCLUSIONS: We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. GENERAL SIGNIFICANCE: Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis.


Assuntos
Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Polimerase I/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Benzotiazóis/farmacologia , Western Blotting , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftiridinas/farmacologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Ressonância Magnética Nuclear Biomolecular , Biogênese de Organelas , Ribossomos/metabolismo
17.
Bioorg Med Chem Lett ; 28(20): 3312-3314, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243588

RESUMO

Oxidized form of avidin, named AvidinOX, provides stable fixation of biotinylated molecules in tissues thus representing a breakthrough in topical treatment of cancer. AvidinOX proved to be a stable receptor for radiolabeled biotin, biotinylated antibodies and cells. In order to expand applicability of the AvidinOX-based delivery platform, in the present study we investigated the possibility to hold biotinylated chemotherapeutics in AvidinOX-treated sites. A novel biotinylated gimatecan-derived camptothecin, coded ST8161AA1, was injected at suboptimal doses into human tumors xenografted in mice alone or pre-complexed to AvidinOX. Significantly higher growth inhibition was observed when the drug was anchored to AvidinOX suggesting the potential utility of this delivery modality for the local treatment of inoperable tumors.


Assuntos
Antineoplásicos/uso terapêutico , Biotina/análogos & derivados , Biotina/uso terapêutico , Camptotecina/análogos & derivados , Carcinoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Avidina/metabolismo , Biotina/síntese química , Biotina/metabolismo , Camptotecina/síntese química , Camptotecina/metabolismo , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Ligação Proteica
18.
Molecules ; 23(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438315

RESUMO

BACKGROUND: Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3-d]isoxazole-4,9-diones as inhibitors of HSP90. METHODS: In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds (5 and 8) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. RESULTS: Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as "clients" of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. CONCLUSIONS: Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Piridonas/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzopiranos/síntese química , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Feminino , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Concentração Inibidora 50 , Isoxazóis/síntese química , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/síntese química , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Survivina , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Quinases raf/metabolismo
19.
Beilstein J Org Chem ; 14: 2482-2487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344771

RESUMO

The increasing emergence of multidrug-resistant pathogens is one of the biggest threats to human health and food security. The discovery of new antibacterials, and in particular the finding of new scaffolds, is an imperative goal to stay ahead of the evolution of antibiotic resistance. Herein we report the synthesis of a 3-decyltetramic acid analogue of the ureido dipeptide natural antibiotic leopolic acid A. The key step in the synthetic strategy is an intramolecular Lacey-Dieckmann cyclization reaction of a linear precursor to obtain the desired 3-alkyl-substituted tetramic acid core. The synthesized analogue is more effective than the parent leopolic acid A against Gram-positive (Staphylococcus pseudintermedius) and Gram-negative (E. coli) bacteria (MIC 8 µg/mL and 64 µg/mL, respectively). Interestingly, the compound shows a significant activity against Staphylococcus pseudintermedius strains expressing a multidrug-resistant phenotype (average MIC 32 µg/mL on 30 strains tested). These results suggest that this molecule can be considered a promising starting point for the development of a novel class of antibacterial agents active also against resistant strains.

20.
Biochim Biophys Acta ; 1850(4): 673-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25497213

RESUMO

BACKGROUND: G-quadruplexes have become important drug-design targets for the treatment of various human disorders such as cancer, diabetes and cardiovascular diseases. Recently, G-quadruplex structures have been visualized in the DNA of human cells and appeared to be dynamically sensitive to the cell cycle and stabilized by small molecule ligands. A small library of isoxazolo naphthoquinones (1a-h), which exhibited a strong antiproliferative activity on different cancer cell lines, was studied as potential ligands of G-quadruplex DNA. METHODS: The DNA binding properties of a series of the selected compounds have been analyzed by fluorescence assays. NMR/modeling studies were performed to describe the complexes between G-quadruplex DNA sequences and two selected compounds 1a and 1b. RESULTS: 1a and 1b in the presence of G-quadruplexes, d(T(2)AG(3)T)(4), d(TAG(3)T(2)A)(4) and d(T(2)G(3)T(2))(4), showed good ability of intercalation and the formation of complexes with 2:1 stoichiometry. 1a showed an important interaction with the sequence Pu22 belonging to the promoter of oncogenes c-myc. CONCLUSIONS: The ligands directly interact with the external G-tetrads of the G-quadruplexes, without alterations in the structure of the G-quadruplex core. The role of the adenine moieties over the G-tetrads in the stabilization of the complexes was discussed. GENERAL SIGNIFICANCE: The results obtained suggested that the strong antiproliferative activity of isoxazolo naphthoquinones is not due to the Hsp90 inhibition, but mainly to the interaction at the level of telomeres and/or at the level of gene promoter. These findings can be used as a basis for the rational drug design of new anticancer agents.


Assuntos
Quadruplex G , Espectroscopia de Ressonância Magnética/métodos , Naftoquinonas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Fluorescência , Humanos , Modelos Moleculares , Naftoquinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA