Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nanotechnology ; 27(37): 375603, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27504708

RESUMO

Silicon nanowires (Si NWs), produced by the chemical etching technique, were decorated with silver nanoparticles (NPs) produced at room temperature by the pulsed laser deposition (PLD) technique. Silver NPs were obtained by means of nanosecond pulsed laser ablation of a target in the presence of a controlled Ar atmosphere. Two different laser pulse numbers and Si NWs having different lengths were used to change the NP number density on the Si NW surface. The resulting Ag NP morphologies were studied by scanning electron microscopy imaging. The results show that this industrially compatible technological approach allows the coverage of the Si NW walls with Ag NPs with a strong control of the NP size distribution and spatial arrangement. The obtained Ag NP decorated Si NWs are free from chemicals contamination and there is no need of post deposition high temperature processes. The optical properties of Si NW arrays were investigated by reflectance spectroscopy that showed the presence of a plasmon related absorption peak, whose position and width is dependent on the Ag NP surface morphology. Coupling the huge surface-to-volume ratio of Si NW arrays with the plasmonic properties of silver nanoparticles resulted in a 3D structure suitable for very sensitive surface enhanced Raman scattering (SERS) applications, as demonstrated by the detection of Rhodamine 6G in aqueous solution at a concentration level of 10(-8) M.

2.
Anal Bioanal Chem ; 406(2): 481-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24232750

RESUMO

Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral recognition of D,L-Trp and D,L-His using L -Cys-capped gold nanoparticles (AuNPs) and copper(II) ion. In the L -Cys-capped AuNPs, the thiol group of the amino acid interacts with AuNPs through the formation of Au­S bond, whereas the α-amino and α-carboxyl groups of the surface-confined cysteine can coordinate the copper(II) ion, which in turn, binds the L- or D-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV­Vis spectra and dynamic light scattering measurements, obtaining different results for L- and D-Trp, as well as for L- and D-His. The knowledge of the solution equilibria of the investigated systems allowed us to accurately calculate in advance the concentrations of the species presentin solution and to optimize the system performances, highlighting the pivotal role of copper(II) ion in the enantiodiscrimination processes.


Assuntos
Fracionamento Químico/métodos , Cobre/química , Histidina/isolamento & purificação , Triptofano/isolamento & purificação , Cátions Bivalentes , Cisteína/química , Ouro/química , Histidina/química , Luz , Nanopartículas/química , Espalhamento de Radiação , Espectrofotometria , Estereoisomerismo , Triptofano/química
3.
ACS Appl Nano Mater ; 6(20): 19126-19135, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37915835

RESUMO

Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.

4.
J Phys Chem Lett ; 13(30): 6935-6943, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876058

RESUMO

According to their high electron density and ultrasmall size, gold nanoclusters (AuNCs) have unique luminescence and photoelectrochemical properties that make them very attractive for various biomedical fields. These applications require a clear understanding of their interaction with biological membranes. Here we demonstrate the ability of the AuNCs as markers for lipidic bilayer structures such as synthetic liposomes and biological extracellular vesicles (EVs). The AuNCs can selectively interact with liposomes or EVs through an attractive electrostatic interaction as demonstrated by zetametry and fluorescence microscopy. According to the ratio of nanoclusters to vesicles, the lipidic membranes can be fluorescently labeled without altering their thickness until charge reversion, the AuNCs being located at the level of the phosphate headgroups. In presence of an excess of AuNCs, the vesicles tend to adhere and aggregate. The strong adsorption of AuNCs results in the formation of a lamellar phase as demonstrated by cryo-transmission electron microscopy and small-angle X-ray scattering techniques.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Bicamadas Lipídicas , Lipossomos , Luminescência , Nanopartículas Metálicas/química
5.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364651

RESUMO

Gold nanoclusters (Au NCs) are attractive luminescent nanoprobes for biomedical applications. In vivo biosensing and bioimaging requires the delivery of the Au NCs into subcellular compartments. In this view, we explore here the possible encapsulation of ultra-small-sized red and blue emitting Au NCs into liposomes of various sizes and chemical compositions. Different methods were investigated to prepare vesicles containing Au NCs in their lumen. The efficiency of the process was correlated to the structural and morphological aspect of the Au NCs' encapsulating vesicles thanks to complementary analyses by SAXS, cryo-TEM, and confocal microscopy techniques. Cell-like-sized vesicles (GUVs) encapsulating red or blue Au NCs were successfully obtained by an innovative method using emulsion phase transfer. Furthermore, exosome-like-sized vesicles (LUVs) containing Au NCs were obtained with an encapsulation yield of 40%, as estimated from ICP-MS.

6.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34443803

RESUMO

Silicon nanowires (Si NWs) emerged in several application fields as a strategic element to surpass the bulk limits with a flat compatible architecture. The approaches used for the Si NW realization have a crucial impact on their final performances and their final cost. This makes the research on a novel and flexible approach for Si NW fabrication a crucial point for Si NW-based devices. In this work, the novelty is the study of the flexibility of thin film metal-assisted chemical etching (MACE) for the fabrication of Si NWs with the possibility of realizing different doped Si NWs, and even a longitudinal heterojunction p-n inside the same single wire. This point has never been reported by using thin metal film MACE. In particular, we will show how this approach permits one to obtain a high density of vertically aligned Si NWs with the same doping of the substrate and without any particular constraint on doping type and level. Fractal arrays of Si NWs can be fabricated without any type of mask thanks to the self-assembly of gold at percolative conditions. This Si NW fractal array can be used as a substrate to realize controllable artificial fractals, integrating other interesting elements with a cost-effective microelectronics compatible approach.

7.
Int J Nanomedicine ; 16: 5153-5165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611399

RESUMO

INTRODUCTION: Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. METHODS: Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. RESULTS: In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. DISCUSSION: This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.


Assuntos
Vesículas Extracelulares , Nanofios , Biomarcadores , Proliferação de Células , Humanos , Silício
8.
Nanomaterials (Basel) ; 11(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34361153

RESUMO

The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO2) is reported. A modification of the metal-assisted chemical etching method allows light-emitting silicon nanowires to be obtained through a fast, low-cost, and industrially compatible approach. NO2 is a well-known dangerous gas that, even with a small concentration of 3 ppm, represents a serious hazard for human health. We exploit the particular optical and electrical properties of these Si NWs to reveal low NO2 concentrations through their photoluminescence (PL) and resistance variations reaching 2 ppm of NO2. Indeed, these Si NWs offer a fast response and reversibility with both electrical and optical transductions. Despite the macro contacts affecting the electrical transduction, the sensing performances are of high interest for further developments. These promising performances coupled with the scalable Si NW synthesis could unfold opportunities for smaller sized and better performing sensors reaching the market for environmental monitoring.

9.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198978

RESUMO

Glioblastoma multiforme (GBM) is the most frequent and deadly human brain cancer. Early diagnosis through non-invasive biomarkers may render GBM more easily treatable, improving the prognosis of this currently incurable disease. We suggest the use of serum extracellular vesicle (sEV)-derived circular RNAs (circRNAs) as highly stable minimally invasive diagnostic biomarkers for GBM diagnosis. EVs were isolated by size exclusion chromatography from sera of 23 GBM and 5 grade 3 glioma (GIII) patients, and 10 unaffected controls (UC). The expression of two candidate circRNAs (circSMARCA5 and circHIPK3) was assayed by droplet digital PCR. CircSMARCA5 and circHIPK3 were significantly less abundant in sEVs from GBM patients with respect to UC (fold-change (FC) of -2.15 and -1.92, respectively) and GIII (FC of -1.75 and -1.4, respectively). Receiver operating characteristic curve (ROC) analysis, based on the expression of sEV-derived circSMARCA5 and circHIPK3, allowed us to distinguish GBM from UC (area under the curve (AUC) 0.823 (0.667-0.979) and 0.855 (0.704 to 1.000), with a 95% confidence interval (CI), respectively). Multivariable ROC analysis, performed by combining the expression of sEV-derived circSMARCA5 and circHIPK3 with preoperative neutrophil to lymphocyte (NLR), platelet to lymphocyte (PLR) and lymphocyte to monocyte (LMR) ratios, three known diagnostic and prognostic GBM markers, allowed an improvement in the GBM diagnostic accuracy (AUC 0.901 (0.7912 to 1.000), 95% CI). Our data suggest sEV-derived circSMARCA5 and circHIPK3 as good diagnostic biomarkers for GBM, especially when associated with preoperative NLR, PLR and LMR.

10.
Aging (Albany NY) ; 12(12): 12324-12341, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554857

RESUMO

Ovarian aging affects female reproductive potential and is characterized by alterations in proteins, mRNAs and non-coding RNAs inside the ovarian follicle. Ovarian somatic cells and the oocyte communicate with each other secreting different molecules into the follicular fluid, by extracellular vesicles. The cargo of follicular fluid vesicles may influence female reproductive ability; accordingly, analysis of extracellular vesicle content could provide information about the quality of the female germ cell.In order to identify the most significant deregulated microRNAs in reproductive aging, we quantified the small extracellular vesicles in human follicular fluid from older and younger women and analyzed the expression of microRNAs enclosed inside the vesicles. We found twice as many small extracellular vesicles in the follicular fluid from older women and several differentially expressed microRNAs. Correlating microRNA expression profiles with vesicle number, we selected 46 deregulated microRNAs associated with aging. Bioinformatic analyses allowed us to identify six miRNAs involved in TP53 signaling pathways. Specifically, miR-16-5p, miR214-3p and miR-449a were downregulated and miR-125b, miR-155-5p and miR-372 were upregulated, influencing vesicle release, oocyte maturation and stress response. We believe that this approach allowed us to identify a battery of microRNAs strictly related to female reproductive aging.


Assuntos
Envelhecimento/genética , Vesículas Extracelulares/metabolismo , Líquido Folicular/citologia , MicroRNAs/metabolismo , Reprodução/genética , Adulto , Biologia Computacional , Vesículas Extracelulares/ultraestrutura , Feminino , Líquido Folicular/metabolismo , Perfilação da Expressão Gênica , Humanos , Infertilidade Masculina/terapia , Masculino , Microscopia Eletrônica de Varredura , Folículo Ovariano/metabolismo , Injeções de Esperma Intracitoplásmicas , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Regulação para Cima
11.
ACS Sens ; 3(9): 1690-1697, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30132653

RESUMO

The realization of an innovative label- and PCR-free silicon nanowires (NWs) optical biosensor for direct genome detection is demonstrated. The system is based on the cooperative hybridization to selectively capture DNA and on the optical emission of quantum confined carriers in Si NWs whose quenching is used as detection mechanism. The Si NWs platform was tested with Hepatitis B virus (HBV) complete genome and it was able to reach a Limit of Detection (LoD) of 2 copies/reaction for the synthetic genome and 20 copies/reaction for the genome extracted from human blood. These results are even better than those obtained with the gold standard real-time PCR method in the genome analysis. The Si NWs sensor showed high sensitivity and specificity, easy detection method, and low manufacturing cost fully compatible with standard silicon process technology. All these points are key factors for the future development of a new class of genetic point-of-care devices that are reliable, fast, low cost, and easy to use for self-testing including in the developing countries.


Assuntos
DNA Viral/sangue , Genoma , Nanofios/química , Silício/química , Técnicas Biossensoriais/métodos , Sondas de DNA/genética , DNA Viral/genética , Vírus da Hepatite B/genética , Humanos , Limite de Detecção , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética
12.
Nanomaterials (Basel) ; 8(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044448

RESUMO

In this paper, we present the realization by a low cost approach compatible with silicon technology of new nanostructures, characterized by the presence of different materials, such as copper iodide (CuI) and silicon nanowires (Si NWs). Silicon is the principal material of the microelectronics field for its low cost, easy manufacturing and market stability. In particular, Si NWs emerged in the literature as the key materials for modern nanodevices. Copper iodide is a direct wide bandgap p-type semiconductor used for several applications as a transparent hole conducting layers for dye-sensitized solar cells, light emitting diodes and for environmental purification. We demonstrated the preparation of a solid system in which Si NWs are embedded in CuI material and the structural, electrical and optical characterization is presented. These new combined Si NWs/CuI systems have strong potentiality to obtain new nanostructures characterized by different doping, that is strategic for the possibility to realize p-n junction device. Moreover, the combination of these different materials opens the route to obtain multifunction devices characterized by promising absorption, light emission, and electrical conduction.

13.
J Colloid Interface Sci ; 462: 216-22, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26454381

RESUMO

Nanoparticles have been increasingly used as sensors for several organic and inorganic analytes. In this work, we report a study on the synthesis of novel highly fluorescent l-Tyr capped silver nanoparticles (AgNPs) and their use for the determination of metal ions. The AgNPs have been characterized by TEM, UV-Vis and Photoluminescence (PL) spectroscopy and dynamic light scattering (DLS) measurements and used for the quantitative determination of Co(II) and Cu(II) ions. In the l-Tyr capped AgNPs, the α-amino and α-carboxyl groups of the surface-confined amino acid can coordinate the entitled metal ions, giving rise to a decrease of the silver surface plasmon absorption, that is linearly correlated with the metal ions concentrations. The addition of Co(II) and Cu(II) solutions to the l-Tyr AgNPs also induces a paramagnetic quenching of the fluorescence in the PL spectra and the related Stern Volmer plots highlight a linear correlation over the whole concentration range for both metal ions, with a more pronounced effect for the copper(II) ion.

14.
Light Sci Appl ; 5(4): e16062, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30167158

RESUMO

We report on the unconventional optical properties exhibited by a two-dimensional array of thin Si nanowires arranged in a random fractal geometry and fabricated using an inexpensive, fast and maskless process compatible with Si technology. The structure allows for a high light-trapping efficiency across the entire visible range, attaining total reflectance values as low as 0.1% when the wavelength in the medium matches the length scale of maximum heterogeneity in the system. We show that the random fractal structure of our nanowire array is responsible for a strong in-plane multiple scattering, which is related to the material refractive index fluctuations and leads to a greatly enhanced Raman scattering and a bright photoluminescence. These strong emissions are correlated on all length scales according to the refractive index fluctuations. The relevance and the perspectives of the reported results are discussed as promising for Si-based photovoltaic and photonic applications.

15.
J Colloid Interface Sci ; 443: 30-5, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25528532

RESUMO

Stereoselective amino acid analysis is still a challenging task. In this work, we report a study on the chiral recognition of D,L-Trp and D,L-His using L-Cys capped silver nanoparticles (AgNPs) and copper(II) ion. The AgNPs have been characterized by TEM, UV-Vis spectra and dynamic light scattering (DLS) measurements and used for chiral discrimination. In the L-Cys capped AgNPs, the α-amino and α-carboxyl groups of the surface-confined amino acid, besides showing either a negative or a neutral charge as a function of the pH, can coordinate the copper(II) ion, which in turn, binds the L- or D-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV-Vis spectroscopy, exploiting the zwitterionic nature of the cysteine to obtain enantiodiscrimination by a fine tuning of the pH. The analysis of the UV-Vis data by using a multiwavelength approach allows us to determine the kinetic constants ruling the processes.


Assuntos
Aminoácidos/química , Nanopartículas Metálicas/química , Prata/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Soluções , Espectrofotometria Ultravioleta , Estereoisomerismo , Termodinâmica
16.
Sci Rep ; 5: 16753, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592198

RESUMO

The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications.

17.
PLoS One ; 9(3): e89048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625863

RESUMO

Gold nanoparticles (AuNPs) conjugated to DNA are widely used for biomedical targeting and sensing applications. DNA functionalization is easily reached on laser generated gold nanoparticles because of their unique surface chemistry, not reproducible by other methods. In this context, we present an extensive investigation concerning the attachment of DNA to the surface of laser generated nanoparticles using Dynamic Light Scattering and UV-Vis spectroscopy. The DNA conjugation is highlighted by the increase of the hydrodynamic radius and by the UV-Vis spectra behavior. Our investigation indicates that Dynamic Light Scattering is a suitable analytical tool to evidence, directly and qualitatively, the binding between a DNA molecule and a gold nanoparticle, therefore it is ideal to monitor changes in the conjugation process when experimental conditions are varied.


Assuntos
Difusão Dinâmica da Luz , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Hidrodinâmica , Lasers , Nanotecnologia/métodos , Oligonucleotídeos/genética , Sais , Cloreto de Sódio , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
18.
Nanoscale Res Lett ; 9(1): 74, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521284

RESUMO

Multi-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm-2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.7 µm. NW diameter is compatible with the occurrence of quantum confinement effects and, accordingly, we observed light emission assignable to the presence of Si and Ge nanostructures. We performed a detailed study of the photoluminescence properties of the NWs, with particular attention to the excitation and de-excitation properties as a function of the temperature and of the excitation photon flux, evaluating the excitation cross section and investigating the presence of non-radiative phenomena. PACS: 61.46.Km; 78.55.-m; 78.67.Lt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA