RESUMO
Neanderthal and Denisovan hybridisation with modern humans has generated a non-random genomic distribution of introgressed regions, the result of drift and selection dynamics. Cross-species genomic incompatibility and more efficient removal of slightly deleterious archaic variants have been proposed as selection-based processes involved in the post-hybridisation purge of archaic introgressed regions. Both scenarios require the presence of functionally different alleles across Homo species onto which selection operated differently according to which populations hosted them, but only a few of these variants have been pinpointed so far. In order to identify functionally divergent archaic variants removed in humans, we focused on mitonuclear genes, which are underrepresented in the genomic landscape of archaic humans. We searched for non-synonymous, fixed, archaic-derived variants present in mitonuclear genes, rare or absent in human populations. We then compared the functional impact of archaic and human variants in the model organism Saccharomyces cerevisiae. Notably, a variant within the mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) gene exhibited a significant decrease in respiratory activity and a substantial reduction of Cox2 levels, a proxy for mitochondrial protein biosynthesis, coupled with the accumulation of the YARS2 protein precursor and a lower amount of mature enzyme. Our work suggests that this variant is associated with mitochondrial functionality impairment, thus contributing to the purging of archaic introgression in YARS2. While different molecular mechanisms may have impacted other mitonuclear genes, our approach can be extended to the functional screening of mitonuclear genetic variants present across species and populations.
Assuntos
Homem de Neandertal , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Homem de Neandertal/genética , Animais , Variação Genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Alelos , Introgressão Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in ß-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.
Assuntos
Candida parapsilosis , Gentisatos , Candida parapsilosis/metabolismo , Carbono , Gentisatos/metabolismo , Hidroxibenzoatos/metabolismo , Filogenia , Proteoma/genética , Proteômica , Saccharomyces cerevisiae/metabolismo , Transcriptoma/genéticaRESUMO
Theropithecus gelada, the last surviving species of this genus, occupy a unique and highly specialised ecological niche in the Ethiopian highlands. A subdivision into three geographically defined populations (Northern, Central and Southern) has been tentatively proposed for this species on the basis of genetic analyses, but genomic data have been investigated only for two of these groups (Northern and Central). Here we combined newly generated whole genome sequences of individuals sampled from the population living south of the East Africa Great Rift Valley with available data from the other two gelada populations to reconstruct the evolutionary history of the species. Integrating genomic and paleoclimatic data we found that gene-flow across populations and with Papio species tracked past climate changes. The isolation and climatic conditions experienced by Southern geladas during the Holocene shaped local diversity and generated diet-related genomic signatures.
Assuntos
Mudança Climática , Fluxo Gênico , Genética Populacional , Hibridização Genética , Animais , Etiópia , Theropithecus/genética , Genoma/genéticaRESUMO
Y chromosome markers can shed light on male-specific population dynamics but for many species no such markers have been discovered and are available yet, despite the potential for recovering Y-linked loci from available genome sequences. Here, we investigated how effective available bioinformatic tools are in recovering informative Y chromosome microsatellites from whole genome sequence data. In order to do so, we initially explored a large dataset of whole genome sequences comprising individuals at various coverages belonging to different species of baboons (genus: Papio) using Y chromosome references belonging to the same genus and more distantly related species (Macaca mulatta). We then further tested this approach by recovering Y-STRs from available Theropithecus gelada genomes using Papio and Macaca Y chromosome as reference sequences. Identified loci were validated in silico by a) comparing within-species relationships of Y chromosome lineages and b) genotyping male individuals in available pedigrees. Each STR was selected not to extend in its variable region beyond 100 base pairs, so that loci can be developed for PCR-based genotyping of non-invasive DNA samples. In addition to assembling a first set of Papio and Theropithecus Y-specific microsatellite markers, we released TYpeSTeR, an easy-to-use script to identify and genotype Y chromosome STRs using population genomic data which can be modulated according to available male reference genomes and genomic data, making it widely applicable across taxa.
Assuntos
Metagenômica , Theropithecus , Humanos , Masculino , Animais , Papio , Macaca mulatta , Repetições de Microssatélites/genéticaRESUMO
SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mineração de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Gorongosa National Park in Mozambique hosts a large population of baboons, numbering over 200 troops. Gorongosa baboons have been tentatively identified as part of Papio ursinus on the basis of previous limited morphological analysis and a handful of mitochondrial DNA sequences. However, a recent morphological and morphometric analysis of Gorongosa baboons pinpointed the occurrence of several traits intermediate between P. ursinus and P. cynocephalus, leaving open the possibility of past and/or ongoing gene flow in the baboon population of Gorongosa National Park. In order to investigate the evolutionary history of baboons in Gorongosa, we generated high and low coverage whole genome sequence data of Gorongosa baboons and compared it to available Papio genomes. RESULTS: We confirmed that P. ursinus is the species closest to Gorongosa baboons. However, the Gorongosa baboon genomes share more derived alleles with P. cynocephalus than P. ursinus does, but no recent gene flow between P. ursinus and P. cynocephalus was detected when available Papio genomes were analyzed. Our results, based on the analysis of autosomal, mitochondrial and Y chromosome data, suggest complex, possibly male-biased, gene flow between Gorongosa baboons and P. cynocephalus, hinting to direct or indirect contributions from baboons belonging to the "northern" Papio clade, and signal the presence of population structure within P. ursinus. CONCLUSIONS: The analysis of genome data generated from baboon samples collected in central Mozambique highlighted a complex set of evolutionary relationships with other baboons. Our results provided new insights in the population dynamics that have shaped baboon diversity.
Assuntos
Evolução Biológica , Papio ursinus , Alelos , Animais , Masculino , Moçambique , Papio/genética , Papio ursinus/anatomia & histologiaRESUMO
The TDP1 (tyrosyl-DNA phosphodiesterase 1) enzyme removes the non-specific covalent intermediates between topoisomerase I and DNA, thus playing a crucial role in preventing DNA damage. While mammals possess only one TDP1 gene, in plants two genes (TDP1α and TDP1ß) are present constituting a small gene subfamily. These display a different domain structure and appear to perform non-overlapping functions in the maintenance of genome integrity. Namely, the HIRAN domain identified in TDP1ß is involved in the interaction with DNA during the recognition of stalled replication forks. The availability of transcriptomic databases in a growing variety of experimental systems provides new opportunities to fill the current gaps of knowledge concerning the evolutionary origin and the specialized roles of TDP1 genes in plants. Whereas a phylogenetic approach has been used to track the evolution of plant TDP1 protein, transcriptomic data from a selection of representative lycophyte, eudicots, and monocots have been implemented to explore the transcriptomic dynamics in different tissues and a variety of biotic and abiotic stress conditions. While the phylogenetic analysis indicates that TDP1α is of non-plant origin and TDP1ß is plant-specific originating in ancient vascular plants, the gene expression data mining comparative analysis pinpoints for tissue- and stress-specific responses.