Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Environ Health Res ; 33(8): 751-767, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35272551

RESUMO

Diarrhoeal disease remains a leading cause of death in children in sub-Saharan Africa, attributed to environmental health factors such as inadequate water, sanitation and hygiene (WASH) and food hygiene. This formative study in low-income areas of Blantyre focussed on the practices in Early Childhood Development Centre (ECDCs) environments where children spend a significant amount of time. A mixed-methods approach was applied to identify key hygiene behaviours in ECDCs through; checklist and structured observations (n = 849 children; n = 33 caregivers), focus group discussions (n = 25) and microbiological sampling (n = 261) of drinking water, food handler's hands, and eating utensils. ECDCs had inadequate WASH infrastructure; coupled with poor hygiene practices and unhygienic environments increased the risk of faecal-oral disease transmission. Presence of E. coli in drinking water confirmed observed poor water handling habits by staff and children. Addressing undesired hygiene practices in ECDCs has the potential to improve the health outcomes of children in low-income settings.


Assuntos
Água Potável , Criança , Humanos , Pré-Escolar , Malaui , Escherichia coli , Diarreia/epidemiologia , Higiene , Saneamento , Abastecimento de Água
2.
Sci Total Environ ; 945: 174142, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906299

RESUMO

Antimicrobial resistance (AMR) poses a severe global health threat, yet the transmission pathways of AMR within communal public environments, where humans and animals interact, remain poorly explored. This study investigated AMR risk pathways, prevalence, and seasonality of extended-spectrum ß-lactamase (ESBL) producing E. coli and K. pneumoniae, and observed practices contributing to environmental contamination within urban, peri-urban, and rural Malawi. Using the SaniPath tool, in August 2020, transect walks across three Malawian study sites identified potential AMR exposure pathways, including drains, standing water, soil, and areas of communal hand contact. Subsequently, from September-2020 to August-2021, 1440 environmental samples were collected at critical points along exposure routes (n = 40/month from each site). These underwent microbiological analysis using chromogenic agar techniques to detect the presence of ESBL E. coli and ESBL K. pneumoniae. Results showed the highest ESBL prevalence in urban environments (68.1 %, 95%CI = 0.64-0.72, p < 0.001) with a higher ESBL presence seen in drains (58.8 %, 95%CI = 055-0.62, p < 0.001) and soil (54.1 %, 95%CI = 0.46-0.62, p < 0.001) compared to other pathways. Environmental contamination was attributed to unavailability and poor condition of sanitation and hygiene infrastructure based on key informant interviews with community leaders (n = 9) and confirmed by independent observation. ESBL prevalence varied between seasons (χ2 (2,N = 1440) = 10.89, p = 0.004), with the highest in the hot-dry period (55.8 % (n = 201)). Prevalence also increased with increased rainfall (for ESBL E.coli). We highlight that community environments are likely to be a crucial component in AMR transmission, evident in the abundance of ESBL bacteria in identified exposure pathways. Additionally, poor sanitation infrastructure and practices coupled with seasonal dynamics further affect the presence of ESBLs in communal environments. Therefore, a context appropriate whole system approach that tackles infrastructure and behavioural factors, supported by effective surveillance is required to impact AMR and a range of aligned development challenges in these settings.


Assuntos
Exposição Ambiental , Escherichia coli , Malaui/epidemiologia , Escherichia coli/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Farmacorresistência Bacteriana , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Microbiologia do Solo , Antibacterianos , Monitoramento Ambiental/métodos , beta-Lactamases
3.
Int J Hyg Environ Health ; 250: 114171, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094389

RESUMO

Disposable diapers are becoming increasingly popular and present an emerging challenge for global waste management, particularly within LMICs. They offer a cheap and convenient way for caregivers to manage child excreta; however, insufficient understanding of safe disposal methods, combined with limited access to waste management services results in hazardous disposal. Used diapers are being increasingly found dumped in the open environment, including in water bodies and in open fields, leading to faecal contamination of the environment and an enhanced risk of transmission of faecal-oral diseases such as cholera and typhoid. United Nations SDG 6 aims to end open defaecation globally by 2030; however, improper disposal of used diapers will hamper progress towards reaching this goal. In this review, we identify current trends in use and subsequent disposal of single use disposable diapers in LMICs, and critically discuss the environmental and public health impacts of current practices, and potential solutions to address these challenges. Contemporary methods for managing the disposal of single use diapers for communities in LMICs tend to be cost prohibitive with few alternative options other than dumping in the environment. Modern cloth diapers offer a low waste alternative to disposable diapers but often carry an unaffordable high upfront cost. Here, in addition to advocating improved efforts by governments to upgrade access and quality of waste management services, we recommend the design and implementation of intervention schemes aimed to increase awareness of safe and hygienic disposal practices for disposable diapers.


Assuntos
Defecação , Gerenciamento de Resíduos , Criança , Humanos
4.
Lancet Microbe ; 4(7): e534-e543, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207684

RESUMO

BACKGROUND: Low-income countries have high morbidity and mortality from drug-resistant infections, especially from enteric bacteria such as Escherichia coli. In these settings, sanitation infrastructure is of variable and often inadequate quality, creating risks of extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales transmission. We aimed to describe the prevalence, distribution, and risks of ESBL-producing Enterobacterales colonisation in sub-Saharan Africa using a One Health approach. METHODS: Between April 29, 2019, and Dec 3, 2020, we recruited 300 households in Malawi for this longitudinal cohort study: 100 each in urban, peri-urban, and rural settings. All households underwent a baseline visit and 195 were selected for longitudinal follow-up, comprising up to three additional visits over a 6 month period. Data on human health, antibiotic usage, health-seeking behaviours, structural and behavioural environmental health practices, and animal husbandry were captured alongside human, animal, and environmental samples. Microbiological processing determined the presence of ESBL-producing E coli and Klebsiella pneumoniae, and hierarchical logistic regression was performed to evaluate the risks of human ESBL-producing Enterobacterales colonisation. FINDINGS: A paucity of environmental health infrastructure and materials for safe sanitation was identified across all sites. A total of 11 975 samples were cultured, and ESBL-producing Enterobacterales were isolated from 1190 (41·8%) of 2845 samples of human stool, 290 (29·8%) of 973 samples of animal stool, 339 (66·2%) of 512 samples of river water, and 138 (46·0%) of 300 samples of drain water. Multivariable models illustrated that human ESBL-producing E coli colonisation was associated with the wet season (adjusted odds ratio 1·66, 95% credible interval 1·38-2·00), living in urban areas (2·01, 1·26-3·24), advanced age (1·14, 1·05-1·25), and living in households where animals were observed interacting with food (1·62, 1·17-2·28) or kept inside (1·58, 1·00-2·43). Human ESBL-producing K pneumoniae colonisation was associated with the wet season (2·12, 1·63-2·76). INTERPRETATION: There are extremely high levels of ESBL-producing Enterobacterales colonisation in humans and animals and extensive contamination of the wider environment in southern Malawi. Urbanisation and seasonality are key risks for ESBL-producing Enterobacterales colonisation, probably reflecting environmental drivers. Without adequate efforts to improve environmental health, ESBL-producing Enterobacterales transmission is likely to persist in this setting. FUNDING: Medical Research Council, National Institute for Health and Care Research, and Wellcome Trust. TRANSLATION: For the Chichewa translation of the abstract see Supplementary Materials section.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Infecções por Klebsiella , Saúde Única , Animais , Humanos , Escherichia coli , Klebsiella pneumoniae , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Estudos Longitudinais , beta-Lactamases , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Estudos de Coortes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA