RESUMO
There is a recent unparalleled increase in demand for rice in sub-Saharan Africa, yet its production is affected by blast disease. Characterization of blast resistance in adapted African rice cultivars can provide important information to guide growers and rice breeders. We used molecular markers for known blast resistance genes (Pi genes; n = 21) to group African rice genotypes (n = 240) into similarity clusters. We then used greenhouse-based assays to challenge representative rice genotypes (n = 56) with African isolates (n = 8) of Magnaporthe oryzae which varied in virulence and genetic lineage. The markers grouped rice cultivars into five blast resistance clusters (BRC) which differed in foliar disease severity. Using stepwise regression, we found that the Pi genes associated with reduced blast severity were Pi50 and Pi65, whereas Pik-p, Piz-t, and Pik were associated with increased susceptibility. All rice genotypes in the most resistant cluster, BRC 4, possessed Pi50 and Pi65, the only genes that were significantly associated with reduced foliar blast severity. Cultivar IRAT109, which contains Piz-t, was resistant against seven African M. oryzae isolates, whereas ARICA 17 was susceptible to eight isolates. The popular Basmati 217 and Basmati 370 were among the most susceptible genotypes. These findings indicate that most tested genes were not effective against African blast pathogen collections. Pyramiding genes in the Pi2/9 multifamily blast resistance cluster on chromosome 6 and Pi65 on chromosome 11 could confer broad-spectrum resistance capabilities. To gain further insights into genomic regions associated with blast resistance, gene mapping could be conducted with resident blast pathogen collections. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Magnaporthe , Oryza , Oryza/genética , Magnaporthe/genética , Doenças das Plantas/genética , África Subsaariana , Mapeamento Cromossômico , Resistência à Doença/genéticaRESUMO
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Assuntos
Magnaporthe , Oryza , África Subsaariana , Magnaporthe/genética , Melhoramento Vegetal , Doenças das PlantasRESUMO
We conducted a survey to assess the occurrence and severity of rice blast and brown spot diseases on popular cultivars grown in the Busia, Kirinyaga, and Kisumu counties of Kenya in 2019. Working with agricultural extension workers within rice production areas, we interviewed farmers (n = 89) regarding their preferred cultivars and their awareness of blast disease, as this was the major focus of our research. We scored the symptoms of blast and brown spot and assessed the lodging, plant height, and maturity of the crops (days after planting). Furthermore, we collected leaf and neck tissues for the assessment of the prevailing fungal populations. We used specific DNA primers to screen for the prevalence of the causal pathogens of blast, Magnaporthe oryzae, and brown spot, Cochliobolus miyabeanus, on asymptomatic and symptomatic leaf samples. We also conducted fungal isolations and PCR-sequencing to identify the fungal species in these tissues. Busia and Kisumu had a higher diversity of cultivars compared to Kirinyaga. The aromatic Pishori (NIBAM 11) was preferred and widely grown for commercial purposes in Kirinyaga, where 86% of Kenyan rice is produced. NIBAM108 (IR2793-80-1) and BW196 (NIBAM 109) were moderately resistant to blast, while NIBAM110 (ITA310) and Vietnam were susceptible. All the cultivars were susceptible to brown spot except for KEH10005 (Arize Tej Gold), a commercial hybrid cultivar. We also identified diverse pathogenic and non-pathogenic fungi, with a high incidence of Nigrospora oryzae, in the rice fields of Kirinyaga. There was a marginal correlation between disease severity/incidence and the occurrence of causal pathogens. This study provides evidence of the need to strengthen pathogen surveillance through retraining agricultural extension agents and to breed for blast and brown spot resistance in popular rice cultivars in Kenya.