Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Atmos Sci ; 73(5): 2039-2047, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-32747838

RESUMO

Reactive nitrogen emissions into the atmosphere are increasing due to human activities, affecting nitrogen deposition to the surface and impacting the productivity of terrestrial and marine ecosystems. An atmospheric chemistry-transport model (TM4-ECPL) is here used to calculate the global distribution of total nitrogen deposition, accounting for the first time for both its inorganic and organic fractions in gaseous and particulate phases, and past and projected changes due to anthropogenic activities. The anthropogenic and biomass burning ACCMIP historical and RCP6.0 and RCP8.5 emissions scenarios are used. Accounting for organic nitrogen (ON) primary emissions, the present-day global nitrogen atmospheric source is about 60% anthropogenic, while total N deposition increases by about 20% relative to simulations without ON primary emissions. About 20-25% of total deposited N is ON. About 10% of the emitted nitrogen oxides are deposited as ON instead of inorganic nitrogen (IN) as is considered in most global models. Almost a 3-fold increase over land (2-fold over the ocean) has been calculated for soluble N deposition due to human activities from 1850 to present. The investigated projections indicate significant changes in the regional distribution of N deposition and chemical composition, with reduced compounds gaining importance relative to oxidized ones, but very small changes in the global total flux. Sensitivity simulations quantify uncertainties due to the investigated model parameterizations of IN partitioning onto aerosols and of N chemically fixed on organics to be within 10% for the total soluble N deposition and between 25-35% for the dissolved ON deposition. Larger uncertainties are associated with N emissions.

2.
Sci Total Environ ; 563-564: 40-52, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27135565

RESUMO

The importance of the long-range transport (LRT) on O3 and CO budgets over the Eastern Mediterranean has been investigated using the state-of-the-art 3-dimensional global chemistry-transport model TM4-ECPL. A 3-D budget analysis has been performed separating the Eastern from the Western basins and the boundary layer (BL) from the free troposphere (FT). The FT of the Eastern Mediterranean is shown to be a strong receptor of polluted air masses from the Western Mediterranean, and the most important source of polluted air masses for the Eastern Mediterranean BL, with about 40% of O3 and of CO in the BL to be transported from the FT aloft. Regional anthropogenic sources are found to have relatively small impact on regional air quality in the area, contributing by about 8% and 18% to surface levels of O3 and CO, respectively. Projections using anthropogenic emissions for the year 2050 but neglecting climate change calculate a surface O3 decrease of about 11% together with a surface CO increase of roughly 10% in the Eastern Mediterranean.

3.
Sci Total Environ ; 470-471: 270-81, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24140698

RESUMO

Major gaseous and particulate pollutant levels over Europe in 2008 have been simulated using the offline-coupled WRFCMAQ chemistry and transport modeling system. The simulations are compared with surface observations from the EMEP stations, ozone (O3) soundings, ship-borne O3 and nitrogen dioxide (NO2) observations in the western Mediterranean, tropospheric NO2 vertical column densities from the SCIAMACHY instrument, and aerosol optical depths (AOD) from the AERONET. The results show that on average, surface O3 levels are underestimated by 4 to 7% over the northern European EMEP stations while they are overestimated by 7-10% over the southern European EMEP stations and underestimated in the tropospheric column (by 10-20%). Particulate matter (PM) mass concentrations are underestimated by up to 60%, particularly in southern and eastern Europe, suggesting underestimated PM sources. Larger differences are calculated for individual aerosol components, particularly for organic and elemental carbon than for the total PM mass, indicating uncertainty in the combustion sources. Better agreement has been obtained for aerosol species over urban areas of the eastern Mediterranean, particularly for nss-SO4(2), attributed to the implementation of higher quality emission inventories for that area. Simulated AOD levels are lower than the AERONET observations by 10% on average, with average underestimations of 3% north of 40°N, attributed to the low anthropogenic emissions in the model and 22% south of 40°N, suggesting underestimated natural and resuspended dust emissions. Overall, the results reveal differences in the model performance between northern and southern Europe, suggesting significant differences in the representation of both anthropogenic and natural emissions in these regions. Budget analyses indicate that O3 and peroxyacetyl nitrate (PAN) are transported from the free troposphere (FT) to the planetary boundary layer over Europe, while other species follow the reverse path and are then advected away from the source region.


Assuntos
Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Modelos Químicos , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA