Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 15(5): 4787, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207563

RESUMO

The physics modeling, dose calculation accuracy and plan quality assessment of the RayStation (v3.5) treatment planning system (TPS) is presented in this study, with appropriate comparisons to the more established Pinnacle (v9.2) TPS. Modeling and validation for the Elekta MLCi and Agility beam models resulted in a good match to treatment machine-measured data based on tolerances of 3% for in-field and out-of-field regions, 10% for buildup and penumbral regions, and a gamma 2%/2mm dose/distance acceptance criteria. TPS commissioning using a wide range of appropriately selected dosimetry equipment, and following published guidelines, established the MLC modeling and dose calculation accuracy to be within standard tolerances for all tests performed. In both homogeneous and heterogeneous mediums, central axis calculations agreed with measurements within 2% for open fields and 3% for wedged fields, and within 4% off-axis. Treatment plan comparisons for identical clinical goals were made to Pinnacle for the following complex clinical cases: hypofractionated non-small cell lung carcinoma, head and neck, stereotactic spine, as well as for several standard clinical cases comprising of prostate, brain, and breast plans. DVHs, target, and critical organ doses, as well as measured point doses and gamma indices, applying both local and global (Van Dyk) normalization at 2%/2 mm and 3%/3 mm (10% lower threshold) acceptance criteria for these composite plans were assessed. In addition 3DVH was used to compare the perturbed dose distributions to the TPS 3D dose distributions. For all 32 cases, the patients QA checks showed > 95% of pixels passing 3% global/3mm gamma.


Assuntos
Algoritmos , Modelos Biológicos , Modelos Estatísticos , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Simulação por Computador , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Validação de Programas de Computador
2.
Int J Bioinform Res Appl ; 8(5-6): 325-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23060414

RESUMO

This study investigates the feasibility of using Artificial Neural Network (ANN) and fuzzy logic based techniques to select treatment margins for dynamically moving targets in the radiotherapy treatment of prostate cancer. The use of data from 15 patients relating error effects to the Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) radiobiological indices was contrasted against the use of data based on the prostate volume receiving 99% of the prescribed dose (V99%) and the rectum volume receiving more than 60Gy (V60). For the same input data, the results of the ANN were compared to results obtained using a fuzzy system, a fuzzy network and current clinically used statistical techniques. Compared to fuzzy and statistical methods, the ANN derived margins were found to be up to 2 mm larger at small and high input errors and up to 3.5 mm larger at medium input error magnitudes.


Assuntos
Lógica Fuzzy , Redes Neurais de Computação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino
3.
Med Biol Eng Comput ; 48(7): 661-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20414810

RESUMO

In this study, we introduce a novel simulation technique to incorporate delineation errors into radiotherapy treatment margins and combine them with organ motion and set-up errors to investigate the cumulative dosimetric effects in different tumour sites. The effects of applying patient realignment correction protocols for radical treatments of prostate, lung and brain tumours were also modelled. Simulations were based on data from measurements using image-guidance techniques, including the use of fiducial markers in prostate and breathing correction techniques for the lung. The use of different sizes of planning target volume (PTV) margins was also evaluated. The prostate clinical target volumes' V99% showed up to 3.2% improvement with reduction in treatment uncertainties. For the lung plans, the V99% increased by up to an average of 10% with increase in treatment margin size from 0.5 to 1.5 cm. This improvement was, however, at the detriment of the dose delivered to the critical organs where the maximum dose received by the spinal cord increased by up to 0.5 Gy per fraction. These results were used to deduce the possible margin reductions and dose escalation achievable with reduced uncertainties.


Assuntos
Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Humanos , Masculino , Método de Monte Carlo , Movimento , Radiometria/métodos , Dosagem Radioterapêutica
4.
Phys Med Biol ; 55(11): 3219-35, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20479517

RESUMO

In this study we investigate the use of a new knowledge-based fuzzy logic technique to derive radiotherapy margins based on radiotherapy uncertainties and their radiobiological effects. The main radiotherapy uncertainties considered and used to build the model were delineation, set-up and organ motion-induced errors. The radiobiological effects of these combined errors, in terms of prostate tumour control probability and rectal normal tissue complication probability, were used to formulate the rule base and membership functions for a Sugeno type fuzzy system linking the error effect to the treatment margin. The defuzzified output was optimized by convolving it with a Gaussian convolution kernel to give a uniformly varying transfer function which was used to calculate the required treatment margins. The margin derived using the fuzzy technique showed good agreement compared to current prostate margins based on the commonly used margin formulation proposed by van Herk et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 47 1121-35), and has nonlinear variation above combined errors of 5 mm standard deviation. The derived margin is on average 0.5 mm bigger than currently used margins in the region of small treatment uncertainties where margin reduction would be applicable. The new margin was applied in an intensity modulated radiotherapy prostate treatment planning example where margin reduction and a dose escalation regime were implemented, and by inducing equivalent treatment uncertainties, the resulting target and organs at risk doses were found to compare well to results obtained using currently recommended margins.


Assuntos
Neoplasias da Próstata/radioterapia , Radiologia/métodos , Algoritmos , Lógica Fuzzy , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Oncologia/métodos , Modelos Estatísticos , Distribuição Normal , Próstata/diagnóstico por imagem , Próstata/patologia , Radiografia , Planejamento da Radioterapia Assistida por Computador
5.
Phys Med Biol ; 54(24): 7417-34, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19934487

RESUMO

A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high quality brachytherapy treatment delivery, taking the above factors into account.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Doses de Radiação , Processamento de Imagem Assistida por Computador , Movimento , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA