Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 1108-1121.e15, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474910

RESUMO

The extracellular space (ECS) of the brain has an extremely complex spatial organization, which has defied conventional light microscopy. Consequently, despite a marked interest in the physiological roles of brain ECS, its structure and dynamics remain largely inaccessible for experimenters. We combined 3D-STED microscopy and fluorescent labeling of the extracellular fluid to develop super-resolution shadow imaging (SUSHI) of brain ECS in living organotypic brain slices. SUSHI enables quantitative analysis of ECS structure and reveals dynamics on multiple scales in response to a variety of physiological stimuli. Because SUSHI produces sharp negative images of all cellular structures, it also enables unbiased imaging of unlabeled brain cells with respect to their anatomical context. Moreover, the extracellular labeling strategy greatly alleviates problems of photobleaching and phototoxicity associated with traditional imaging approaches. As a straightforward variant of STED microscopy, SUSHI provides unprecedented access to the structure and dynamics of live brain ECS and neuropil.


Assuntos
Encéfalo/diagnóstico por imagem , Espaço Extracelular/metabolismo , Imageamento Tridimensional , Animais , Movimento Celular , Corantes/metabolismo , Fenômenos Eletrofisiológicos , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Glutamatos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurópilo , Osmose , Sinapses/metabolismo
2.
J Neurosci ; 42(45): 8488-8497, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351828

RESUMO

Super-resolution fluorescence microscopy holds tremendous potential for discovery in neuroscience. Much of the molecular machinery and anatomic specializations that give rise to the unique and bewildering electrochemical activity of neurons are nanoscale by design, ranging somewhere between 1 nm and 1 µm. It is at this scale where most of the unknown and exciting action is and where cell biologists flock to in their dreams, but it was off limits for light microscopy until recently. While the optical principles of super-resolution microscopy are firmly established by now, the technology continues to advance rapidly in many crucial areas, enhancing its performance and reliability, and making it more accessible and user-friendly, which is sorely needed. Indeed, super-resolution microscopy techniques are nowadays widely used for visualizing immunolabeled protein distributions in fixed or living cells. However, a great potential of super-resolution microscopy for neuroscience lies in shining light on the nanoscale structures and biochemical activities in live-tissue settings, which should be developed and harnessed much more fully. In this review, we will present several vivid examples based on STED and RESOLFT super-resolution microscopy, illustrating the possibilities and challenges of nano-imaging in vivo to pique the interest of tech-developers and neurobiologists alike. We will cover recent technical progress that is facilitating in vivo applications, and share new biological insights into the nanoscale mechanisms of cellular communication between neurons and glia.


Assuntos
Neurônios , Reprodutibilidade dos Testes , Microscopia de Fluorescência/métodos
3.
Glia ; 70(4): 607-618, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34664734

RESUMO

A major challenge for studying neuron-astrocyte communication lies in visualizing the tripartite synapse, which is the physical site where astrocytic processes contact and interact with neuronal synapses. While conventional light microscopy cannot resolve the anatomical details of the tripartite synapse, electron microscopy only provides ultrastructural snapshots that tell us little about its living state and dynamics. Stimulated emission depletion (STED) microscopy is a super-resolution fluorescence imaging technique that can provide live images of tripartite synapses with nanoscale spatial resolution. It is compatible with physiology experiments and imaging in the intact brain in vivo, opening up new opportunities to link the nanoscale structure of the tripartite system with functional readouts of neurons and astrocytes or even behavior. In this review, we first summarize the findings and insights from previous studies addressing the structure-function relationship of the tripartite synapse using conventional imaging techniques. We then explain the basic principle of STED microscopy and the main challenges facing its application to live-tissue imaging of fine astrocytic processes. We summarize insights from our recent STED studies, which revealed new aspects of the structure and physiology of the tripartite synapse and the surrounding extracellular space. Finally, we discuss how the STED approach and other advanced optical techniques can illuminate the role of astrocytes for brain physiology and animal behavior.


Assuntos
Microscopia , Sinapses , Animais , Astrócitos/fisiologia , Neurônios/fisiologia , Imagem Óptica , Sinapses/fisiologia
4.
Glia ; 70(12): 2378-2391, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097958

RESUMO

Much of the Ca2+ activity in astrocytes is spatially restricted to microdomains and occurs in fine processes that form a complex anatomical meshwork, the so-called spongiform domain. A growing body of literature indicates that those astrocytic Ca2+ signals can influence the activity of neuronal synapses and thus tune the flow of information through neuronal circuits. Because of technical difficulties in accessing the small spatial scale involved, the role of astrocyte morphology on Ca2+ microdomain activity remains poorly understood. Here, we use computational tools and idealized 3D geometries of fine processes based on recent super-resolution microscopy data to investigate the mechanistic link between astrocytic nanoscale morphology and local Ca2+ activity. Simulations demonstrate that the nano-morphology of astrocytic processes powerfully shapes the spatio-temporal properties of Ca2+ signals and promotes local Ca2+ activity. The model predicts that this effect is attenuated upon astrocytic swelling, hallmark of brain diseases, which we confirm experimentally in hypo-osmotic conditions. Upon repeated neurotransmitter release events, the model predicts that swelling hinders astrocytic signal propagation. Overall, this study highlights the influence of the complex morphology of astrocytes at the nanoscale and its remodeling in pathological conditions on neuron-astrocyte communication at so-called tripartite synapses, where astrocytic processes come into close contact with pre- and postsynaptic structures.


Assuntos
Astrócitos , Sinalização do Cálcio , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sinapses/metabolismo
5.
Nat Methods ; 16(12): 1263-1268, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636458

RESUMO

Super-resolution microscopy offers tremendous opportunities to unravel the complex and dynamic architecture of living cells. However, current super-resolution microscopes are well suited for revealing protein distributions or cell morphology, but not both. We present a super-resolution platform that permits correlative single-molecule imaging and stimulated emission depletion microscopy in live cells. It gives nanoscale access to the positions and movements of synaptic proteins within the morphological context of growth cones and dendritic spines.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
6.
Glia ; 69(6): 1605-1613, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710691

RESUMO

The extracellular space (ECS) plays a central role in brain physiology, shaping the time course and spread of neurochemicals, ions, and nutrients that ensure proper brain homeostasis and neuronal communication. Astrocytes are the most abundant type of glia cell in the brain, whose processes densely infiltrate the brain's parenchyma. As astrocytes are highly sensitive to changes in osmotic pressure, they are capable of exerting a potent physiological influence on the ECS. However, little is known about the spatial distribution and temporal dynamics of the ECS that surrounds astrocytes, owing mostly to a lack of appropriate techniques to visualize the ECS in live brain tissue. Mitigating this technical limitation, we applied the recent SUper-resolution SHadow Imaging technique (SUSHI) to astrocyte-labeled organotypic hippocampal brain slices, which allowed us to concurrently image the complex morphology of astrocytes and the ECS with unprecedented spatial resolution in a live experimental setting. Focusing on ring-like astrocytic microstructures in the spongiform domain, we found them to enclose sizable pools of interstitial fluid and cellular structures like dendritic spines. Upon experimental osmotic challenge, these microstructures remodeled and swelled up at the expense of the pools, effectively increasing the physical interface between astrocytic and cellular structures. Our study reveals novel facets of the dynamic microanatomical relationships between astrocytes, neuropil, and the ECS in living brain tissue, which could be of functional relevance for neuron-glia communication in a variety of (patho)physiological settings, for example, LTP induction, epileptic seizures or acute ischemic stroke, where osmotic disturbances are known to occur.


Assuntos
Astrócitos , Encéfalo/diagnóstico por imagem , Isquemia Encefálica , Espaço Extracelular , Humanos , Acidente Vascular Cerebral
7.
Methods ; 174: 49-55, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006677

RESUMO

Super-resolution microscopy provides diffraction-unlimited optical access to the intricate morphology of neurons in living brain tissue, resolving their finest structural details, which are critical for neuronal function. However, as existing image analysis software tools have been developed for diffraction-limited images, they are generally not well suited for quantifying nanoscale structures like dendritic spines. We present SpineJ, a semi-automatic ImageJ plugin that is specifically designed for this purpose. SpineJ offers an intuitive and user-friendly graphical user interface, facilitating fast, accurate, and unbiased analysis of spine morphology.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pescoço/diagnóstico por imagem , Software , Coluna Vertebral/diagnóstico por imagem , Algoritmos , Dendritos/fisiologia , Microscopia Intravital , Microscopia de Fluorescência/métodos , Pescoço/anatomia & histologia , Neurônios/citologia , Neurônios/fisiologia , Distribuição Normal , Distribuição de Poisson , Coluna Vertebral/anatomia & histologia , Fatores de Tempo
8.
PLoS Comput Biol ; 15(8): e1006795, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425510

RESUMO

Astrocytes, a glial cell type of the central nervous system, have emerged as detectors and regulators of neuronal information processing. Astrocyte excitability resides in transient variations of free cytosolic calcium concentration over a range of temporal and spatial scales, from sub-microdomains to waves propagating throughout the cell. Despite extensive experimental approaches, it is not clear how these signals are transmitted to and integrated within an astrocyte. The localization of the main molecular actors and the geometry of the system, including the spatial organization of calcium channels IP3R, are deemed essential. However, as most calcium signals occur in astrocytic ramifications that are too fine to be resolved by conventional light microscopy, most of those spatial data are unknown and computational modeling remains the only methodology to study this issue. Here, we propose an IP3R-mediated calcium signaling model for dynamics in such small sub-cellular volumes. To account for the expected stochasticity and low copy numbers, our model is both spatially explicit and particle-based. Extensive simulations show that spontaneous calcium signals arise in the model via the interplay between excitability and stochasticity. The model reproduces the main forms of calcium signals and indicates that their frequency crucially depends on the spatial organization of the IP3R channels. Importantly, we show that two processes expressing exactly the same calcium channels can display different types of calcium signals depending on the spatial organization of the channels. Our model with realistic process volume and calcium concentrations successfully reproduces spontaneous calcium signals that we measured in calcium micro-domains with confocal microscopy and predicts that local variations of calcium indicators might contribute to the diversity of calcium signals observed in astrocytes. To our knowledge, this model is the first model suited to investigate calcium dynamics in fine astrocytic processes and to propose plausible mechanisms responsible for their variability.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Modelos Neurológicos , Animais , Encéfalo/metabolismo , Biologia Computacional , Simulação por Computador , Hipocampo/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Análise Espaço-Temporal , Processos Estocásticos
9.
Proc Natl Acad Sci U S A ; 114(6): 1401-1406, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115721

RESUMO

Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Condução Nervosa/fisiologia , Terminações Pré-Sinápticas/fisiologia , Algoritmos , Animais , Plasticidade Celular/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos Endogâmicos C57BL , Microscopia Confocal , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Imagem com Lapso de Tempo/métodos
10.
Proc Natl Acad Sci U S A ; 114(17): 4513-4518, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396402

RESUMO

Disruption of neuronal morphology contributes to the pathology of neurodegenerative disorders such as Alzheimer's disease (AD). However, the underlying molecular mechanisms are unknown. Here, we show that postnatal deletion of Cdh1, a cofactor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase in neurons [Cdh1 conditional knockout (cKO)], disrupts dendrite arborization and causes dendritic spine and synapse loss in the cortex and hippocampus, concomitant with memory impairment and neurodegeneration, in adult mice. We found that the dendrite destabilizer Rho protein kinase 2 (Rock2), which accumulates in the brain of AD patients, is an APC/CCdh1 substrate in vivo and that Rock2 protein and activity increased in the cortex and hippocampus of Cdh1 cKO mice. In these animals, inhibition of Rock activity, using the clinically approved drug fasudil, prevented dendritic network disorganization, memory loss, and neurodegeneration. Thus, APC/CCdh1-mediated degradation of Rock2 maintains the dendritic network, memory formation, and neuronal survival, suggesting that pharmacological inhibition of aberrantly accumulated Rock2 may be a suitable therapeutic strategy against neurodegeneration.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Células Dendríticas/fisiologia , Regulação da Expressão Gênica/fisiologia , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas Cdh1/genética , Sobrevivência Celular , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Quinases Associadas a rho/genética
11.
J Neurosci ; 38(44): 9355-9363, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381427

RESUMO

The extracellular space occupies approximately one-fifth of brain volume, molding a spider web of gaps filled with interstitial fluid and extracellular matrix where neurons and glial cells perform in concert. Yet, very little is known about the spatial organization and dynamics of the extracellular space, let alone its influence on brain function, owing to a lack of appropriate techniques (and a traditional bias toward the inside of cells, not the spaces in between). At the same time, it is clear that understanding fundamental brain functions, such as synaptic transmission, memory, sleep, and recovery from disease, calls for more focused research on the extracellular space of the brain. This review article highlights several key research areas, covering recent methodological and conceptual progress that illuminates this understudied, yet critically important, brain compartment, providing insights into the opportunities and challenges of this nascent field.


Assuntos
Encéfalo/metabolismo , Encéfalo/ultraestrutura , Espaço Extracelular/metabolismo , Microscopia Eletrônica/tendências , Animais , Encéfalo/citologia , Humanos , Microscopia Eletrônica/métodos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura
12.
Acta Neuropathol ; 135(6): 839-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696365

RESUMO

Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known. We analyzed biopsies from AD patients and APP x presenilin 1 knock-in mice that were previously shown to present a loss of pyramidal neurons in the CA1 area of the hippocampus. We observed that the proportion of stubby spines and the width of spine necks are inversely correlated with synapse density in frontal cortical biopsies from non-AD and AD patients. In mice, the reduction in the density of synapses in the stratum radiatum was preceded by an alteration of spine morphology, with a reduction of their length and an enlargement of their neck. Serial sectioning examined with electron microscopy allowed us to precisely measure spine parameters. Mathematical modeling indicated that the shortening and widening of the necks should alter the electrical compartmentalization of the spines, leading to reduced postsynaptic potentials in spine heads, but not in soma. Accordingly, there was no alteration in basal synaptic transmission, but long-term potentiation and spatial memory were impaired. These results indicate that an alteration of spine morphology could be involved in the early cognitive deficits associated with AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Simulação por Computador , Modelos Animais de Doenças , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Microscopia Eletrônica , Pessoa de Meia-Idade , Modelos Neurológicos , Presenilina-1/genética , Presenilina-1/metabolismo , Sinapses/patologia , Técnicas de Cultura de Tecidos
13.
J Neurosci ; 35(45): 15073-81, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558778

RESUMO

Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen in the human condition (i.e., have structural validity) and which produce phenotypes that mirror ID/ASDs (i.e., have face validity). We show that SynGAP haploinsufficiency, which causes ID with co-occurring ASD in humans, mimics and occludes the synaptic pathophysiology associated with deletion of the Fmr1 gene. Syngap(+/-) and Fmr1(-/y) mice show increases in basal protein synthesis and metabotropic glutamate receptor (mGluR)-dependent long-term depression that, unlike in their wild-type controls, is independent of new protein synthesis. Basal levels of phosphorylated ERK1/2 are also elevated in Syngap(+/-) hippocampal slices. Super-resolution microscopy reveals that Syngap(+/-) and Fmr1(-/y) mice show nanoscale alterations in dendritic spine morphology that predict an increase in biochemical compartmentalization. Finally, increased basal protein synthesis is rescued by negative regulators of the mGlu subtype 5 receptor and the Ras-ERK1/2 pathway, indicating that therapeutic interventions for fragile X syndrome may benefit patients with SYNGAP1 haploinsufficiency. SIGNIFICANCE STATEMENT: As the genetics of intellectual disability (ID) and autism spectrum disorders (ASDs) are unraveled, a key issue is whether genetically divergent forms of these disorders converge on common biochemical/cellular pathways and hence may be amenable to common therapeutic interventions. This study compares the pathophysiology associated with the loss of fragile X mental retardation protein (FMRP) and haploinsufficiency of synaptic GTPase-activating protein (SynGAP), two prevalent monogenic forms of ID. We show that Syngap(+/-) mice phenocopy Fmr1(-/y) mice in the alterations in mGluR-dependent long-term depression, basal protein synthesis, and dendritic spine morphology. Deficits in basal protein synthesis can be rescued by pharmacological interventions that reduce the mGlu5 receptor-ERK1/2 signaling pathway, which also rescues the same deficit in Fmr1(-/y) mice. Our findings support the hypothesis that phenotypes associated with genetically diverse forms of ID/ASDs result from alterations in common cellular/biochemical pathways.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/biossíntese , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Proteínas Ativadoras de ras GTPase/biossíntese , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Proteínas Ativadoras de ras GTPase/genética
14.
Methods ; 88: 57-66, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26070997

RESUMO

Stimulated emission depletion (STED) microscopy was the first fluorescence microscopy technique to break the classic diffraction barrier of light microscopy. Even though STED was conceived more than 20 years ago and acknowledged with the 2014 Nobel Prize in Chemistry, it has not yet been widely adopted in biological research, which stands to benefit enormously from the potent combination of nanoscale spatial resolution and far-field optics. STED microscopy is an ensemble imaging technique that uses a pair of lasers for controlling the excitation state of fluorescent molecules in a targeted manner over nanoscale distances. STED is commonly a point-scanning technique, where the fluorescence spot from the first laser is sharpened by way of stimulated emission induced by the second laser. However, recent developments have extended the concept to multi-point scanning and to additional photophysical switching mechanisms. This review explains the basic principles behind STED microscopy and the differences with other super-resolution techniques. It provides practical information on how to construct and operate a STED microscope that can be used for nanoscale imaging of GFP and its variants in living brain slices. We conclude by highlighting a series of recent technological innovations that are bound to enhance its scope and performance in the near future.


Assuntos
Encéfalo/citologia , Microscopia de Fluorescência/instrumentação , Neurônios/citologia , Animais , Microscopia de Fluorescência/métodos
15.
J Neurosci ; 34(18): 6405-12, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790210

RESUMO

Dendritic spines are basic units of neuronal information processing and their structure is closely reflected in their function. Defects in synaptic development are common in neurodevelopmental disorders, making detailed knowledge of age-dependent changes in spine morphology essential for understanding disease mechanisms. However, little is known about the functionally important fine-morphological structures, such as spine necks, due to the limited spatial resolution of conventional light microscopy. Using stimulated emission depletion microscopy (STED), we examined spine morphology at the nanoscale during normal development in mice, and tested the hypothesis that it is impaired in a mouse model of fragile X syndrome (FXS). In contrast to common belief, we find that, in normal development, spine heads become smaller, while their necks become wider and shorter, indicating that synapse compartmentalization decreases substantially with age. In the mouse model of FXS, this developmental trajectory is largely intact, with only subtle differences that are dependent on age and brain region. Together, our findings challenge current dogmas of both normal spine development as well as spine dysgenesis in FXS, highlighting the importance of super-resolution imaging approaches for elucidating structure-function relationships of dendritic spines.


Assuntos
Encéfalo/patologia , Espinhas Dendríticas/patologia , Síndrome do Cromossomo X Frágil/patologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Neurônios/ultraestrutura , Envelhecimento/patologia , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Estatísticas não Paramétricas
16.
J Neuroinflammation ; 12: 202, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538404

RESUMO

BACKGROUND: Microglia cells are the resident macrophages of the central nervous system and are considered its first line of defense. In the normal brain, their ramified processes are highly motile, constantly scanning the surrounding brain tissue and rapidly moving towards sites of acute injury or danger signals. These microglial dynamics are thought to be critical for brain homeostasis. Under pathological conditions, microglial cells undergo "activation," which modifies many of their molecular and morphological properties. Investigations of the effects of activation on motility are limited and have given mixed results. In particular, little is known about how microglial motility is altered in epilepsy, which is characterized by a strong inflammatory reaction and microglial activation. METHODS: We used a mouse model of status epilepticus induced by kainate injections and time-lapse two-photon microscopy to image GFP-labeled microglia in acute hippocampal brain slices. We studied how microglial activation affected the motility of microglial processes, including basal motility, and their responses to local triggering stimuli. RESULTS: Our study reveals that microglial motility was largely preserved in kainate-treated animals, despite clear signs of microglial activation. In addition, whereas the velocities of microglial processes during basal scanning and towards a laser lesion were unaltered 48 h after status epilepticus, we observed an increase in the size of the territory scanned by single microglial processes during basal motility and an elevated directional velocity towards a pipette containing a purinergic agonist. CONCLUSIONS: Microglial activation differentially impacted the dynamic scanning behavior of microglia in response to specific acute noxious stimuli, which may be an important feature of the adaptive behavior of microglia during pathophysiological conditions.


Assuntos
Microglia/patologia , Estado Epiléptico/patologia , Animais , Receptor 1 de Quimiocina CX3C , Movimento Celular , Agonistas de Aminoácidos Excitatórios , Hipocampo/patologia , Técnicas In Vitro , Inflamação/patologia , Ácido Caínico , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores de Quimiocinas/genética , Receptores Purinérgicos P2Y12 , Estado Epiléptico/induzido quimicamente
17.
Biomed Opt Express ; 15(2): 743-752, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404309

RESUMO

The advent of super-resolution microscopy has opened up new avenues to unveil brain structures with unprecedented spatial resolution in the living state. Yet, its application to live animals remains a genuine challenge. Getting optical access to the brain in vivo requires the use of a 'cranial window', whose mounting greatly influences image quality. Indeed, the coverslip used for the cranial window should lie as orthogonal as possible to the optical axis of the objective, or else significant optical aberrations occur. In this work, we assess the effect of the tilt angle of the coverslip on STED and two-photon microscopy, in particular, image brightness and spatial resolution. We then propose an approach to measure and reduce the tilt using a simple device added to the microscope, which can ensure orthogonality with a precision of 0.07°.

18.
Front Mol Neurosci ; 17: 1356453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450042

RESUMO

Introduction: Pain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a "black box", where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations. Method: We focused on observing neural activity patterns in the primary somatosensory cortex (S1) of mice using two-photon calcium imaging after injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons. We extracted features related to the ratio of up and down-regulated cells in calcium activity and the correlation level of activity between cells as input data for the ML model. The ML model was validated using a Leave-One-Subject-Out Cross-Validation approach to distinguish between non-pain, pain, and drug-induced analgesic states. Results and discussion: The ML model was designed to classify data into three distinct categories: non-pain, pain, and drug-induced analgesic states. Its versatility was demonstrated by successfully classifying different states across various pain models, including inflammatory and neuropathic pain, as well as confirming its utility in identifying the analgesic effects of drugs like ketoprofen, morphine, and the efficacy of magnolin, a candidate analgesic compound. In conclusion, our ML model surpasses the limitations of previous DL approaches by leveraging manually extracted features. This not only clarifies the decision-making process of the ML model but also yields insights into neuronal activity patterns associated with pain, facilitating preclinical studies of analgesics with higher potential for clinical translation.

19.
Neurophotonics ; 11(1): 014415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38545127

RESUMO

The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.

20.
Biophys J ; 104(4): 778-85, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23442956

RESUMO

Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.


Assuntos
Encéfalo/citologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Espinhas Dendríticas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA