RESUMO
Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 × 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 × 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 × 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 × 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Sequências Reguladoras de Ácido Nucleico , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação/genéticaRESUMO
In the oncological area, pancreatic cancer is one of the most lethal diseases, with 5-year survival rising just 10% in high-development countries. This disease is genetically characterized by KRAS as a driven mutation followed by SMAD4, CDKN2, and TP53-associated mutations. In clinical aspects, pancreatic cancer presents unspecific clinical symptoms with the absence of screening and early plasmatic biomarker, being that CA19-9 is the unique plasmatic biomarker having specificity and sensitivity limitations. We analyzed the plasmatic exosome proteomic profile of 23 patients with pancreatic cancer and 10 healthy controls by using Nanoscale liquid chromatography coupled to tandem mass spectrometry (NanoLC-MS/MS). The pancreatic cancer patients were subdivided into IPMN and PDAC. Our findings show 33, 34, and 7 differentially expressed proteins when comparing the IPMN vs. control, PDAC-No treatment vs. control, and PDAC-No treatment vs. IPMN groups, highlighting proteins of the complement system and coagulation, such as C3, APOB, and SERPINA. Additionally, PDAC with no treatment showed 11 differentially expressed proteins when compared to Folfirinox neoadjuvant therapy or Gemcitabine adjuvant therapy. So here, we found plasmatic exosome-derived differentially expressed proteins among cancer patients (IPMN, PDAC) when comparing with healthy controls, which could represent alternative biomarkers for diagnostic and prognostic evaluation, supporting further scientific and clinical studies on pancreatic cancer.
Assuntos
Exossomos , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Detecção Precoce de Câncer , Prognóstico , Neoplasias Pancreáticas/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica , Proteômica , Espectrometria de Massas em Tandem , Antígeno CA-19-9 , Neoplasias PancreáticasRESUMO
This work describes the development of a Point-of-Care (POC) Lab-on-a-Chip (LOC) instrument for diagnosis of SARS-CoV-2 by Reverse-Transcription Loop-mediated isothermal amplification (RT-LAMP). The hardware is based on a Raspberry Pi computer ($35), a video camera, an Arduino Nano microcontroller, a printed circuit board as a heater and a 3D printed housing. The chips were manufactured in polymethyl methacrylate (PMMA) using a CO2 laser cutting machine and sealed with a PCR optic plastic film. The chip temperature is precisely controlled by a proportional-integral-derivative (PID) algorithm. During the RT-LAMP amplifications the chip was maintained at â¼ (65.0 ± 0.1) °C for 25 minutes and 5 minutes cooling down, totaling a 30 minutes of reaction .The software interpretation occurs in less than a second. The chip design has four 25 µL chambers, two for clinical samples and two for positive and negative control-samples. The RT-LAMP master mix solution added in the chip chambers contains the pH indicator Phenol Red, that is pink (for pH â¼ 8.0) before amplification and becomes yellow (pH â¼ 6.0) if the genetic material is amplified. The RT-LAMP SARS-CoV-2 diagnostic was made by color image recognition using the OpenCV machine vision software library. The software was programmed to automatically distinguish the HSV color parameter distribution in each one of the four chip chambers. The instrument was successfully tested for SARS-CoV-2 diagnosis, in 22 clinic samples, 11 positives and 11 negatives, achieving an assertiveness of 86% when compared to the results obtained by RT-LAMP standard reactions performed in conventional PCR equipment.
RESUMO
Leukemia is a type of cancer that affects white blood cells. In this disease, immature blood cells undergo genetic mutations, leading to excessive replication and reduced cell death compared to healthy cells. In cancer, there may be the activation of oncogenes and the deactivation of tumor suppressor genes that control certain cellular functions. Despite the undeniable contribution to the patient's recovery, conventional cancer treatments may have some not-so-beneficial effects. In this case, gene therapy appears as an alternative to classical treatments. Gene therapy delivers genetic material to cells to replace or modify dysfunctional genes, a safe method for neoplasms. One of the types of nucleic acids explored in gene therapy is microRNA (miRNA), a group of endogenous, non-proteincoding, small single-stranded RNA molecules involved in the regulation of gene expression, cell division, differentiation, angiogenesis, migration, apoptosis, and carcinogenesis. This review aims to bring together the most recent advances found in the literature on cancer gene therapy based on microRNAs in the oncological context, focusing on leukemia.