Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 66(11): 2183-2194, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36044083

RESUMO

Aquaculture is the practice of developing aquatic animals and plants under artificial environmental conditions, either in a controlled or semi-controlled environment. Due to high animal protein demand, it is one of the world's growing food production industries. It plays a vital role in contributing to food security and lowering the unemployment rate of the world's growing population. This review article aims to scope sight on the environmental factors that affect the growth and economic production process of Nile tilapia. Many of these factors are listed and analyzed in this review, such as stocking densities; various feed frequencies and feeding rates; water quality; water temperature; dissolved oxygen concentration; water pH degree; ammonia (NH3), nitrite (NO2), and nitrate (NO3) concentration; feeding regimes; feed cost; and tank culturing system of Nile tilapia. These factors can significantly alter body weight, composition, survival, behavior, feed intake, feed conversion ratio, feeding efficiency, and the health and reproduction of Oreochromis niloticus. Furthermore, feeding, growth, disease risks, and survival rates are all affected by water quality parameters. In general, higher growth performance of O. niloticus in aquaculture can be obtained by keeping the optimum quantity of feed with proper feeding rate and frequency, maintaining a good proportion of stocking density, and regularly evaluating water quality. This review article highlights-in details-the impact of various environmental factors on growth performance criteria of Nile tilapia (Oreochromis niloticus).


Assuntos
Ciclídeos , Animais , Aquicultura , Peso Corporal , Ração Animal/análise
2.
Mar Environ Res ; 190: 106068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421706

RESUMO

Aquatic pollution negatively affects water bodies, marine ecosystems, public health, and economy. Restoration of contaminated habitats has attracted global interest since protecting the health of marine ecosystems is crucial. Bioremediation is a cost-effective and eco-friendly way of transforming hazardous, resistant contaminants into environmentally benign products using diverse biological treatments. Because of their robust morphology and broad metabolic capabilities, fungi play an important role in bioremediation. This review summarizes the features employed by aquatic fungi for detoxification and subsequent bioremediation of different toxic and recalcitrant compounds in aquatic ecosystems. It also details how mycoremediation may convert chemically-suspended matters, microbial, nutritional, and oxygen-depleting aquatic contaminants into ecologically less hazardous products using multiple modes of action. Mycoremediation can also be considered in future research studies on aquatic, including marine, ecosystems as a possible tool for sustainable management, providing a foundation for selecting and utilizing fungi either independently or in microbial consortia.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Fungos/metabolismo
3.
J Fungi (Basel) ; 8(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736109

RESUMO

The genus Aspergillus comprises several species that play pivotal roles in agriculture. Herein, we morphologically and physiologically characterized four genetically distinct Aspergillus spp., namely A. japonicus, A. niger, A. flavus, and A. pseudoelegans, and examined their ability to suppress the white mold disease of bean caused by Sclerotinia sclerotiorum in vitro and under greenhouse conditions. Seriation type of Aspergillus spp. correlates with conidiospores discharge as detected on the Petri glass lid. Members of Nigri section cover their conidial heads with hard shells after prolonged incubation. In addition, sporulation of the tested Aspergillus isolates is temperature sensitive as it becomes inhibited at low temperatures and the colonies become white. Examined Aspergillus spp. were neither infectious to legumes nor aflatoxigenic as confirmed by HPLC except for A. flavus and A. pseudoelegans which, secreted 5 and 1 ppm of aflatoxin B1, respectively. Co-inoculations of Sclerotinia's mycelium or sclerotia with a spore suspension of Aspergillus spp. inhibited their germination on PDA at 18 °C and 28 °C, and halted disease onset on detached common bean and soybean leaves. Similarly, plants treated with A. japonicus and A. niger showed the highest survival rates compared to untreated plants. In conclusion, black Aspergillus spp. are efficient biocides and safe alternatives for the management of plant diseases, particularly in organic farms.

4.
Front Plant Sci ; 13: 947949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388534

RESUMO

The use of calcium carbonate-precipitating bacteria (CCPB) has become a well-established ground-improvement technique. However, the effect of the interaction of CCPB with nanoparticles (NPs) on plant performance is still meager. In this study, we aimed at evaluating the role of CCPB and/or silicon NPs (Si-NPs) on the growth, physio-biochemical traits, and antioxidative defense of wheat (Triticum aestivum L.) under semi-arid environmental conditions. A 2-year pot experiment was carried out to determine the improvement of the sandy soil inoculated with CCPB and the foliar application of Si-NPs on wheat plants. We tested the following treatments: spraying plants with 1.0 or 1.5 mM Si-NPs (control = 0 mM Si-NPs), soil inoculated with Bacillus lichenforms (MA16), Bacillus megaterium (MA27), or Bacillus subtilis (MA34), and the interaction of individual Bacillus species with Si-NPs. Our results showed that soil inoculation with any of the three isolated CCPB and/or foliar application of Si-NPs at the rates of 1.0 or 1.5 mM significantly improved (p ≤ 0.05) the physiological and biochemical attributes as well as the enzymatic antioxidant activities of wheat plants. Therefore, the combined treatments of CCPB + Si-NPs were more effective in enhancing physio-biochemical characteristics and enzymatic antioxidant activities than the individual treatments of CCPB or Si-NPs, thus achieving the best performance in the treatment of MA34 + 1.5 mM Si-NPs. Our results demonstrated that the co-application of CCPB and Si-NPs, particularly MA34 + 1.5 mM Si-NPs, considerably activated the antioxidant defense system to mitigate the adverse effects of oxidative stress, thus increasing tolerance and enhancing the production of wheat plants in sandy soils under semi-arid environmental conditions.

5.
Poult Sci ; 101(4): 101684, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35168162

RESUMO

Globally, several studies have investigated the utilization and efficacy of promising medicinal herbal plants to enhance livestock and poultry production. The most commonly investigated phytobiotics in broiler ration were oregano, garlic, thyme, rosemary, black pepper, hot red pepper (HRP), and sage. Phytobiotics are classified on the basis of the medicinal properties of plants, their essential oil extracts, and their bioactive compounds. The majority of bioactive compounds in plants are secondary metabolites, such as terpenoids, phenolic, glycosides, and alkaloids. The composition and concentrations of these bioactive constitutes vary according to their biological factors and manufacturing and storage conditions. Furthermore, HRP is one of the most important and widely used spices in the human diet. Capsicum annum, that is, HRP, is a species of the plant genus Capsicum (pepper), which is a species native to southern North America and northern South America and is widely grown and utilized for its fresh or cooked fruits. Moreover, these fruits may be used as dried powders or processed forms of oleoresins. Researches have proven that C. annuum is the only plant that produces the alkaloid capsaicinoids. Approximately 48% of its active substances are capsaicin (8-methyl-N-vanillyl-6-nonemide), the main active compound responsible for the intense effects of HRP varieties and the main component inducing the hot flavor. This review aimed to highlight the effects of HRP as a phytobiotic in broiler nutrition and its mode of action as a possible alternative to antibiotics and clarify its impact on broiler and layer productivity.


Assuntos
Capsicum , Animais , Antibacterianos , Galinhas , Aves Domésticas , Pós
6.
Saudi J Biol Sci ; 28(12): 6782-6794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866977

RESUMO

The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (Na2SeO3) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming Na2SeO3 to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as Lactobacillus paracasei HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by L. paracasei HM1 were found to be pH (6.0), temperature (35˚C), Na2SeO3 (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of L. paracasei-SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of L. paracasei-SeNPs. The size of L. paracasei-SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was -20.1 ± 0.6 mV in one peak. The data also revealed that L. paracasei-SeNPs effectively inhibited the growth of Candida and Fusarium species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from L. paracasei HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using L. paracasei HM1 outperforms the chemically produced SeNPs. In vivo studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.

7.
Antibiotics (Basel) ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33921977

RESUMO

Pasteurella multocida is a Gram-negative bacterium that causes drastic infections in cattle and humans. In this study, 55 isolates were recovered from 115 nasal swabs from apparently healthy and diseased cattle and humans in Minufiya and Qalyubia, Egypt. These isolates were confirmed by kmt1 existence, and molecular classification of the capsular types showed that types B, D, and E represented 23/55 (41.8%), 21/55 (38.1%), and 11/55 (20.0%), respectively. The isolates were screened for five virulence genes with hgbA, hgbB, and ptfA detected in 28/55 (50.9%), 30/55 (54.5%), and 25/55 (45.5%), respectively. We detected 17 capsular and virulence gene combinations with a discriminatory power (DI) of 0.9286; the most prevalent profiles were dcbF type D and dcbF type D, hgbA, hgbB, and ptfA, which represented 8/55 (14.5%) each. These strains exhibited high ranges of multiple antimicrobial resistance indices; the lowest resistances were against chloramphenicol, ciprofloxacin, amoxicillin/clavulanic acid, and levofloxacin. The macrolide-lincosamide-streptogramin B methylase gene erm(Q), with erm(42) encoding MLSB monomethyltransferase, mph(E) encoding a macrolide efflux pump, and msr(E) encoding macrolide-inactivating phosphotransferase were present. The class 1 and 2 integrons and extended-spectrum ß-lactamase genes intl1, intl2, blaCTX-M, blaCTX-M-1, and blaTEM were detected. It is obvious to state that co-occurrence of resistance genes resulted in multiple drug-resistant phenotypes. The identified isolates were virulent, genetically diverse, and resistant to antimicrobials, highlighting the potential risk to livestock and humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA