Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
EMBO J ; 39(21): e101767, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33021744

RESUMO

Changes in cell metabolism and plasma membrane potential have been linked to shifts between tissue growth and differentiation, and to developmental patterning. How such changes mediate these effects is poorly understood. Here, we use the developing wing of Drosophila to investigate the interplay between cell metabolism and a key developmental regulator-the Hedgehog (Hh) signalling pathway. We show that reducing glycolysis both lowers steady-state levels of ATP and stabilizes Smoothened (Smo), the 7-pass transmembrane protein that transduces the Hh signal. As a result, the transcription factor Cubitus interruptus accumulates in its full-length, transcription activating form. We show that glycolysis is required to maintain the plasma membrane potential and that plasma membrane depolarization blocks cellular uptake of N-acylethanolamides-lipoprotein-borne Hh pathway inhibitors required for Smo destabilization. Similarly, pharmacological inhibition of glycolysis in mammalian cells induces ciliary translocation of Smo-a key step in pathway activation-in the absence of Hh. Thus, changes in cell metabolism alter Hh signalling through their effects on plasma membrane potential.


Assuntos
Membrana Celular/metabolismo , Glicólise/genética , Glicólise/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Potenciais da Membrana/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Gramicidina/uso terapêutico , Lipoproteínas , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Receptor Smoothened/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/patologia , Asas de Animais/fisiologia
2.
Acc Chem Res ; 56(7): 810-820, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943016

RESUMO

Traditional cell biological techniques are not readily suitable for studying lipid signaling events because genetic perturbations are much slower than the interconversion of lipids in complex metabolic networks. For this reason, novel chemical biological approaches have been developed. One approach is to chemically modify a lipid with a so-called "caging group" that renders it inactive, but this cage can be removed photochemically inside cells to release the bioactive molecule. These caged compounds offer unique advantages for studying the kinetics of cellular biochemistry and have been extensively used in the past. However, a limitation of conventional caged compounds is their ability to diffuse freely inside the cell, which does not permit localized activation below optical precision. This poses a challenge for studying lipid signaling as lipid function inside cells is tightly linked to their parent membrane. An ideal lipid probe should, therefore, be restricted to a single organelle membrane or preferentially to a single leaflet. We first demonstrated the plasma-membrane-specific photorelease of fatty acids by employing sulfonated caging groups. Using these caged fatty acid probes we demonstrated that lipid localization determines signaling outcome. Generalizing this approach, we designed a so-called "click cage" that can be coupled to lipids and offers the possibility to attach organelle targeting groups via click chemistry. Using this strategy, we have synthesized plasma membrane, lysosomal, mitochondria, and endoplasmic-reticulum-targeted lipids that can be used to dissect organelle-specific signaling events. To reduce the synthetic effort associated with generating caged compounds, we designed a coumarin triflate reagent that allows the direct functionalization of phosphate- or carboxylate-containing compounds. With this novel reagent, we synthesized a small library of photocaged G-protein-coupled receptor (GPCR) ligands to study the underlying lipid signaling dynamics. Most recently, we have focused on quantifying the kinetics of lipid signaling for different diacylglycerol (DAG) species using plasma-membrane-targeted caged DAGs. Using this approach, we quantitatively measured lipid-protein affinities and lipid transbilayer dynamics in living cells. After analyzing DAGs with different acyl chain length and saturation degree, we discovered that affinities can vary by up to an order of magnitude. This finding clearly shows that cells are able to distinguish between individual DAG species, thereby demonstrating that lipid diversity matters in cellular signal processing. Although the recent advances have yielded valuable tools to study lipid signaling, challenges remain on specifically targeting the different leaflets of organelle membranes. Furthermore, it is necessary to simplify the experimental approaches required for parametrizing and corroborating quantitative kinetic models of lipid signaling. In the future, we envision that the application of leaflet-specific caged lipids to model membrane systems will be of crucial importance for understanding lipid asymmetry.


Assuntos
Organelas , Transdução de Sinais , Membrana Celular/metabolismo , Proteínas/metabolismo , Lipídeos/química
3.
EMBO Rep ; 23(11): e54025, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36134875

RESUMO

Adenosine triphosphate (ATP) production and utilization is critically important for animal development. How these processes are regulated in space and time during tissue growth remains largely unclear. We used a FRET-based sensor to dynamically monitor ATP levels across a growing tissue, using the Drosophila larval wing disc. Although steady-state levels of ATP are spatially uniform across the wing pouch, inhibiting oxidative phosphorylation reveals spatial differences in metabolic behavior, whereby signaling centers at compartment boundaries produce more ATP from glycolysis than the rest of the tissue. Genetic perturbations indicate that the conserved Hedgehog signaling pathway can enhance ATP production by glycolysis. Collectively, our work suggests the existence of a homeostatic feedback loop between Hh signaling and glycolysis, advancing our understanding of the connection between conserved developmental patterning genes and ATP production during animal tissue development.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais/metabolismo , Glicólise , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Biophys J ; 122(24): 4699-4709, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37978803

RESUMO

Studying the role of molecularly distinct lipid species in cell signaling remains challenging due to a scarcity of methods for performing quantitative lipid biochemistry in living cells. We have recently used lipid uncaging to quantify lipid-protein affinities and rates of lipid trans-bilayer movement and turnover in the diacylglycerol signaling pathway. This approach is based on acquiring live-cell dose-response curves requiring light dose titrations and experimental determination of uncaging photoreaction efficiency. We here aimed to develop a methodological approach that allows us to retrieve quantitative kinetic data from uncaging experiments that 1) require only typically available datasets without the need for specialized additional constraints and 2) should in principle be applicable to other types of photoactivation experiments. Our new analysis framework allows us to identify model parameters such as diacylglycerol-protein affinities and trans-bilayer movement rates, together with initial uncaged diacylglycerol levels, using noisy single-cell data for a broad variety of structurally different diacylglycerol species. We find that lipid unsaturation degree and side-chain length generally correlate with faster lipid trans-bilayer movement and turnover and also affect lipid-protein affinities. In summary, our work demonstrates how rate parameters and lipid-protein affinities can be quantified from single-cell signaling trajectories with sufficient sensitivity to resolve the subtle kinetic differences caused by the chemical diversity of cellular signaling lipid pools.


Assuntos
Diglicerídeos , Transdução de Sinais , Proteínas , Bicamadas Lipídicas , Cinética
5.
Proc Natl Acad Sci U S A ; 117(14): 7729-7738, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213584

RESUMO

Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol-protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.


Assuntos
Diglicerídeos/química , Lipídeos/química , Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Sobrevivência Celular , Isoenzimas/metabolismo , Cinética , Luz , Modelos Biológicos , Proteína Quinase C/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 114(7): 1566-1571, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154130

RESUMO

Lipid-mediated signaling events regulate many cellular processes. Investigations of the complex underlying mechanisms are difficult because several different methods need to be used under varying conditions. Here we introduce multifunctional lipid derivatives to study lipid metabolism, lipid-protein interactions, and intracellular lipid localization with a single tool per target lipid. The probes are equipped with two photoreactive groups to allow photoliberation (uncaging) and photo-cross-linking in a sequential manner, as well as a click-handle for subsequent functionalization. We demonstrate the versatility of the design for the signaling lipids sphingosine and diacylglycerol; uncaging of the probe for these two species triggered calcium signaling and intracellular protein translocation events, respectively. We performed proteomic screens to map the lipid-interacting proteome for both lipids. Finally, we visualized a sphingosine transport deficiency in patient-derived Niemann-Pick disease type C fibroblasts by fluorescence as well as correlative light and electron microscopy, pointing toward the diagnostic potential of such tools. We envision that this type of probe will become important for analyzing and ultimately understanding lipid signaling events in a comprehensive manner.


Assuntos
Diglicerídeos/metabolismo , Lipídeos/análise , Proteoma/metabolismo , Proteômica/métodos , Esfingosina/química , Sinalização do Cálcio , Diglicerídeos/química , Fibroblastos/metabolismo , Células HeLa , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Microscopia Confocal , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Ligação Proteica , Transporte Proteico , Proteoma/química , Esfingosina/metabolismo , Imagem com Lapso de Tempo/métodos
9.
Anal Chem ; 91(18): 12085-12093, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31441640

RESUMO

Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.


Assuntos
Glicerofosfolipídeos/análise , Lipidômica , Modelos Moleculares , Software , Espectrometria de Massas em Tandem
10.
Chemistry ; 25(68): 15483-15487, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31461184

RESUMO

Photorelease of caged compounds is among the most powerful experimental approaches for studying cellular functions on fast timescales. However, its full potential has yet to be exploited, as the number of caged small molecules available for cell biological studies has been limited by synthetic challenges. Addressing this problem, a straightforward, one-step procedure for efficiently synthesizing caged compounds was developed. An in situ generated benzylic coumarin triflate reagent was used to specifically functionalize carboxylate and phosphate moieties in the presence of free hydroxy groups, generating various caged lipid metabolites, including a number of GPCR ligands. By combining the photo-caged ligands with the respective receptors, an easily implementable experimental platform for the optical control and analysis of GPCR-mediated signal transduction in living cells was developed. Ultimately, the described synthetic strategy allows rapid generation of photo-caged small molecules and thus greatly facilitates the analysis of their biological roles in live cell microscopy assays.


Assuntos
Cumarínicos/química , Lipídeos/síntese química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Ligantes , Lipídeos/química , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/fisiologia
11.
Biochemistry ; 57(1): 47-55, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29200271

RESUMO

Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.


Assuntos
Bioquímica/métodos , Técnicas Citológicas , Modelos Biológicos , Animais , Bioquímica/tendências , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Microambiente Celular , Técnicas Citológicas/tendências , Humanos , Técnicas In Vitro/tendências , Ciência dos Materiais/métodos , Ciência dos Materiais/tendências
12.
Angew Chem Int Ed Engl ; 57(40): 13339-13343, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30048020

RESUMO

Lipid messengers exert their function on short time scales at distinct subcellular locations, yet most experimental approaches for perturbing their levels trigger cell-wide concentration changes. Herein, we report on a coumarin-based photocaging group that can be modified with organelle-targeting moieties by click chemistry and thus enables photorelease of lipid messengers in distinct organelles. We show that caged arachidonic acid and sphingosine derivatives can be selectively delivered to mitochondria, the ER, lysosomes, and the plasma membrane. By comparing the cellular calcium transients induced by localized uncaging of arachidonic acid and sphingosine, we show that the precise intracellular localization of the released second messenger is crucial for the signaling outcome. Ultimately, we anticipate that this new class of caged compounds will greatly facilitate the study of cellular processes on the organelle level.


Assuntos
Ácido Araquidônico/química , Química Click , Cumarínicos/química , Organelas/metabolismo , Esfingosina/análogos & derivados , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Cumarínicos/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Esfingosina/metabolismo , Imagem com Lapso de Tempo , Raios Ultravioleta
13.
Biochim Biophys Acta ; 1841(8): 1085-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24713581

RESUMO

Lipid derivatives that can be activated by light, often referred to as 'caged' lipids, are useful tools to manipulate intact cells non-invasively. Here we focus on experimental approaches that have made use of caged lipids. Apart from summarizing the recent advances and available tools in the field, we strive to highlight the experimental challenges that arise from lipid-specific biophysical properties and the abundance of an enormous diversity of distinct molecular lipid species in cells. This article is part of a Special Issue entitled Tools to study lipid functions.


Assuntos
Lipídeos/fisiologia , Transdução de Sinais , Biofísica , Lipídeos/química , Estrutura Molecular , Sistemas do Segundo Mensageiro , Esteróis/química
14.
Angew Chem Int Ed Engl ; 52(9): 2408-10, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23339134

RESUMO

A definite turn-on: Turning on fluorescence only where successful labeling is happening sounds as desirable as delivering a drug only where the drug target resides. New fluorogenic xanthene derivatives from the Bertozzi research group are getting us closer to "magic bullet" dyes.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Fluorescência
15.
Curr Opin Chem Biol ; 72: 102234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493527

RESUMO

Lipids exert their cellular functions in individual organelles, in some cases on the scale of even smaller, specialized membrane domains. Thus, the experimental capacity to precisely manipulate lipid levels at the subcellular level is crucial for studying lipid-related processes in cell biology. Photo-caged lipid probes which partition into specific cellular membranes prior to photoactivation have emerged as key tools for localized and selective perturbation of lipid concentration in living cells. In this review, we provide an overview of the recent advances in the area and outline which developments are still required for the methodology to be more widely implemented in the wider membrane biology community.


Assuntos
Lipídeos , Organelas , Membrana Celular/metabolismo
16.
Science ; 380(6647): 818-823, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228189

RESUMO

Cytotoxic T lymphocytes (CTLs) kill virus-infected and cancer cells through T cell receptor (TCR) recognition. How CTLs terminate signaling and disengage to allow serial killing has remained a mystery. TCR activation triggers membrane specialization within the immune synapse, including the production of diacylglycerol (DAG), a lipid that can induce negative membrane curvature. We found that activated TCRs were shed into DAG-enriched ectosomes at the immune synapse rather than internalized through endocytosis, suggesting that DAG may contribute to the outward budding required for ectocytosis. Budding ectosomes were endocytosed directly by target cells, thereby terminating TCR signaling and simultaneously disengaging the CTL from the target cell to allow serial killing. Thus, ectocytosis renders TCR signaling self-limiting.


Assuntos
Diglicerídeos , Exocitose , Sinapses Imunológicas , Receptores de Antígenos de Linfócitos T , Linfócitos T Citotóxicos , Divisão Celular , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Exocitose/imunologia , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/ultraestrutura , Micropartículas Derivadas de Células/imunologia , Diglicerídeos/metabolismo
17.
Chembiochem ; 12(5): 728-37, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21365732

RESUMO

PpoA is a bifunctional enzyme that catalyzes the dioxygenation of unsaturated C18 fatty acids. The products of this reaction are termed psi factors and have been shown to play a crucial role in conferring a balance between sexual and asexual spore development as well as production of secondary metabolites in the fungus Aspergillus nidulans. Studies on the reaction mechanism revealed that PpoA uses two different heme domains to catalyze two subsequent reactions. Initially, the fatty acid substrate is dioxygenated at C8, yielding an 8-hydroperoxy fatty acid at the N-terminal domain. This reaction is catalyzed by a peroxidase/dioxygenase-type domain that exhibits many similarities to prostaglandin H2 synthases and involves a stereospecific homolytic hydrogen abstraction from C8 of the substrate. The C terminus harbors a heme thiolate P450 domain in which rearrangement of the 8-hydroperoxide to the final product, a 5,8-dihydroxy fatty acid, takes place. To obtain further information about the intrinsic kinetics and reaction mechanism of PpoA, we synthesized C5-dideutero- and C8-dideutero-oleic acid by a novel protocol that offers a straightforward synthesis without employing the toxic additive hexamethylphosphoramide (HMPA) during CC coupling reactions or mercury salts upon thioketal deprotection. These deuterated fatty acids were then employed for kinetic analysis under multiple-turnover conditions. The results indicate that the hydrogen abstraction at C8 is the rate-determining step of the overall reaction because we observed a KIE (V(H) /V(D) ) of ∼33 at substrate saturation that suggests extensive nuclear tunneling contributions for hydrogen transfer. Deuteration of the substrate at C5, however, had little effect on V(H) /V(D) but resulted in a different product pattern presumably due to an altered lifetime and partitioning of a reaction intermediate.


Assuntos
Aspergillus nidulans/enzimologia , Deutério/metabolismo , Dioxigenases/metabolismo , Hidrogênio/metabolismo , Ácido Oleico/metabolismo , Aspergillus nidulans/metabolismo , Cinética
18.
Amino Acids ; 41(2): 449-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20967559

RESUMO

The natural product triostin A is known as an antibiotic based on specific DNA recognition. Structurally, a bicyclic depsipeptide backbone provides a well-defined scaffold preorganizing the recognition motifs for bisintercalation. Replacing the intercalating quinoxaline moieties of triostin A by nucleobases results in a potential major groove binder. The functionalization of this DNA binding triostin A analog with a metal binding ligand system is reported, thereby generating a hybrid molecule with DNA binding and metal coordinating capability. Transition metal ions can be placed in close proximity to dsDNA by means of non-covalent interactions. The synthesis of the nucleobase-modified triostin A analog is described containing a propargylglycine for later attachment of the ligand by click-chemistry. As ligand, two [1,4,7]triazacyclononane rings were bridged by a phenol. Formation of the proposed binuclear zinc complex was confirmed for the ligand and the triostin A analog/ligand construct by high-resolution mass spectrometry. The complex as well as the respective hybrid led to stabilization of dsDNA, thus implying that metal complexation and DNA binding are independent processes.


Assuntos
Quelantes/síntese química , Complexos de Coordenação/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Quelantes/química , Química Click , Complexos de Coordenação/química , Cobre , Sequências Repetidas Invertidas , Quinoxalinas/química , Temperatura de Transição , Zinco
19.
Elife ; 92020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33201800

RESUMO

Compartmentalized oscillations of second messengers affect global cellular signaling.


Assuntos
Cálcio , AMP Cíclico , Sistemas do Segundo Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA