Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(6): 690-703, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36779349

RESUMO

BACKGROUND: Impaired beta-adrenergic receptor (ß1 and ß2AR) function following hypoxia underlies ischemic heart failure/stroke. Activation of PI3Kγ (phosphoinositide 3-kinase γ) by beta-adrenergic receptor leads to feedback regulation of the receptor by hindering beta-adrenergic receptor dephosphorylation through inhibition of PP2A (protein phosphatase 2A). However, little is known about PI3Kγ feedback mechanism in regulating hypoxia-mediated ß1 and ß2AR dysfunction and cardiac remodeling. METHODS: Human embryonic kidney 293 cells or mouse adult cardiomyocytes and C57BL/6 (WT) or PI3Kγ knockout (KO) mice were subjected to hypoxia. Cardiac plasma membranes and endosomes were isolated and evaluated for ß1 and ß2AR density and function, PI3Kγ activity and ß1 and ß2AR-associated PP2A activity. Metabolic labeling was performed to assess ß1 and ß2AR phosphorylation and epinephrine/norepinephrine levels measured post-hypoxia. RESULTS: Hypoxia increased ß1 and ß2AR phosphorylation, reduced cAMP, and led to endosomal accumulation of phosphorylated ß2ARs in human embryonic kidney 293 cells and WT cardiomyocytes. Acute hypoxia in WT mice resulted in cardiac remodeling and loss of adenylyl cyclase activity associated with increased ß1 and ß2AR phosphorylation. This was agonist-independent as plasma and cardiac epinephrine and norepinephrine levels were unaltered. Unexpectedly, PI3Kγ activity was selectively increased in the endosomes of human embryonic kidney 293 cells and WT hearts post-hypoxia. Endosomal ß1- and ß2AR-associated PP2A activity was inhibited upon hypoxia in human embryonic kidney 293 cells and WT hearts showing regulation of beta-adrenergic receptors by PI3Kγ. This was accompanied with phosphorylation of endogenous inhibitor of protein phosphatase 2A whose phosphorylation by PI3Kγ inhibits PP2A. Increased ß1 and ß2AR-associated PP2A activity, decreased beta-adrenergic receptor phosphorylation, and normalized cardiac function was observed in PI3Kγ KO mice despite hypoxia. Compared to WT, PI3Kγ KO mice had preserved cardiac response to challenge with ß1AR-selective agonist dobutamine post-hypoxia. CONCLUSIONS: Agonist-independent activation of PI3Kγ underlies hypoxia sensing as its ablation leads to reduction in ß1- and ß2AR phosphorylation and amelioration of cardiac dysfunction.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores Adrenérgicos beta , Animais , Humanos , Camundongos , Endossomos/metabolismo , Epinefrina , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Norepinefrina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Remodelação Ventricular
2.
J Physiol ; 601(3): 567-606, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36533558

RESUMO

Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Sarcopenia , Humanos , Camundongos , Animais , Sarcopenia/metabolismo , Proteostase , Músculo Esquelético/metabolismo , Hipóxia/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações
3.
Hepatology ; 73(5): 1892-1908, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32799332

RESUMO

BACKGROUND AND AIMS: Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS: Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS: Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Hepatopatias Alcoólicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Fosfatase 2/metabolismo , Sarcopenia/etiologia , Animais , Feminino , Homeostase , Humanos , Imunoprecipitação , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia
4.
J Cardiovasc Pharmacol ; 80(3): 354-363, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323150

RESUMO

ABSTRACT: Antibody response to self-antigens leads to autoimmune response that plays a determinant role in cardiovascular disease outcomes including dilated cardiomyopathy (DCM). Although the origins of the self-reactive endogenous autoantibodies are not well-characterized, it is believed to be triggered by tissue injury or dysregulated humoral response. Autoantibodies that recognize G protein-coupled receptors are considered consequential because they act as modulators of downstream receptor signaling displaying a wide range of unique pharmacological properties. These wide range of pharmacological properties exhibited by autoantibodies has cellular consequences that is associated with progression of disease including DCM. Increase in autoantibodies recognizing beta-1 adrenergic receptor (ß1AR), a G protein-coupled receptor critical for cardiac function, is observed in patients with DCM. Cellular and animal model studies have indicated pathological roles for the ß1AR autoantibodies but less is understood about the molecular basis of their modulatory effects. Despite the recognition that ß1AR autoantibodies could mediate deleterious outcomes, emerging evidence suggests that not all ß1AR autoantibodies are deleterious. Recent clinical studies show that ß1AR autoantibodies belonging to the IgG3 subclass is associated with beneficial cardiac outcomes in patients. This suggests that our understanding on the roles the ß1AR autoantibodies play in mediating outcomes is not well-understood. Technological advances including structural determinants of antibody binding could provide insights on the modulatory capabilities of ß1AR autoantibodies in turn, reflecting their diversity in mediating ß1AR signaling response. In this study, we discuss the significance of the diversity in signaling and its implications in pathology.


Assuntos
Cardiomiopatia Dilatada , Receptores Adrenérgicos beta 1 , Animais , Autoanticorpos , Coração
5.
Mol Cell ; 41(6): 636-48, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21419339

RESUMO

Phosphoinositide 3-kinase γ (PI3Kγ) is activated by G protein-coupled receptors (GPCRs). We show here that PI3Kγ inhibits protein phosphatase 2A (PP2A) at the ß-adrenergic receptor (ßAR, a GPCR) complex altering G protein coupling. PI3Kγ inhibition results in significant increase of ßAR-associated phosphatase activity leading to receptor dephosphorylation and resensitization preserving cardiac function. Mechanistically, PI3Kγ inhibits PP2A activity at the ßAR complex by phosphorylating an intracellular inhibitor of PP2A (I2PP2A) on serine residues 9 and 93, resulting in enhanced binding to PP2A. Indeed, enhanced phosphorylation of ß2ARs is observed with a phosphomimetic I2PP2A mutant that was completely reversed with a mutant mimicking dephosphorylated state. siRNA depletion of endogenous I2PP2A augments PP2A activity despite active PI3K resulting in ß2AR dephosphorylation and sustained signaling. Our study provides the underpinnings of a PI3Kγ-mediated regulation of PP2A activity that has significant consequences on receptor function with broad implications in cellular signaling.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Receptores Adrenérgicos beta 2/fisiologia , Transdução de Sinais/fisiologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Proteínas de Ligação a DNA , Endossomos/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cytometry A ; 93(5): 563-570, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573550

RESUMO

Beta-adrenergic receptors (ß-ARs) play a critical role in many diseases. Quantification of ß-AR density may have clinical implications in terms of assessing disease severity and identifying patients who could potentially benefit from beta-blocker therapy. Classical methods for ß-AR quantification are based on labor-intensive and time-consuming radioligand binding assays. Here, we report optimization of a flow cytometry-based method utilizing a biotinylated ß-AR ligand alprenolol as a probe and use of this method to quantify relative receptor expression in healthy controls (HC). Quantum™ MESF beads were used for quantification in absolute fluorescence units. The probe was chemically modified by adding a spacer moiety between biotin and alprenolol to stabilize receptor binding, thus preventing binding decay. Testing of three different standard cell fixation and permeabilization methods (formaldehyde fixation and saponin, Tween-20, or Triton-X 100 permeabilization) showed that the formaldehyde/Triton-X 100 method yielded the best results. ß-AR expression was significantly higher in granulocytes compared to mononuclear cells. These data show that flow cytometric quantification of relative ß-AR expression in circulating leukocytes is a suitable technology for large-scale clinical application. © 2018 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Leucócitos , Receptores Adrenérgicos beta/análise , Humanos , Fixação de Tecidos/métodos
7.
Curr Cardiol Rep ; 20(11): 117, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30259192

RESUMO

PURPOSE OF THE REVIEW: Proinflammatory cytokines are consistently elevated in congestive heart failure. In the current review, we provide an overview on the current understanding of how tumor necrosis factor-α (TNFα), a key proinflammatory cytokine, potentiates heart failure by overwhelming the anti-inflammatory responses disrupting the homeostasis. RECENT FINDINGS: Studies have shown co-relationship between severity of heart failure and levels of the proinflammatory cytokine TNFα and one of its secondary mediators interleukin-6 (IL-6), suggesting their potential as biomarkers. Recent efforts have focused on understanding the mechanisms of how proinflammatory cytokines contribute towards cardiac dysfunction and failure. In addition, how unchecked proinflammatory cytokines and their cross-talk with sympathetic system overrides the anti-inflammatory response underlying failure. The review offers insights on how TNFα and IL-6 contribute to cardiac dysfunction and failure. Furthermore, this provides a forum to begin the discussion on the cross-talk between sympathetic drive and proinflammatory cytokines and its determinant role in deleterious outcomes.


Assuntos
Insuficiência Cardíaca/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Humanos
8.
Am J Physiol Cell Physiol ; 313(5): C575-C583, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835436

RESUMO

We are interested in understanding mechanisms that govern the protective role of exercise against lipid-induced insulin resistance, a key driver of type 2 diabetes. In this context, cell culture models provide a level of abstraction that aid in our understanding of cellular physiology. Here we describe the development of an in vitro myotube contraction system that provides this protective effect, and which we have harnessed to investigate lipid-induced insulin resistance. C2C12 myocytes were differentiated into contractile myotubes. A custom manufactured platinum electrode system and pulse stimulator, with polarity switching, provided an electrical pulse stimulus (EPS) (1 Hz, 6-ms pulse width, 1.5 V/mm, 16 h). Contractility was assessed by optical flow flied spot noise mapping and inhibited by application of ammonium acetate. Following EPS, myotubes were challenged with 0.5 mM palmitate for 4 h. Cells were then treated with or without insulin for glucose uptake (30 min), secondary insulin signaling activation (10 min), and phosphoinositide 3-kinase-α (PI3Kα) activity (5 min). Prolonged EPS increased non-insulin-stimulated glucose uptake (83%, P = 0.002), Akt (Thr308) phosphorylation (P = 0.005), and insulin receptor substrate-1 (IRS-1)-associated PI3Kα activity (P = 0.048). Palmitate reduced insulin-specific action on glucose uptake (-49%, P < 0.001) and inhibited insulin-stimulated Akt phosphorylation (P = 0.049) and whole cell PI3Kα activity (P = 0.009). The inhibitory effects of palmitate were completely absent with EPS pretreatment at the levels of glucose uptake, insulin responsiveness, Akt phosphorylation, and whole cell PI3Kα activity. This model suggests that muscle contraction alone is a sufficient stimulus to protect against lipid-induced insulin resistance as evidenced by changes in the proximal canonical insulin-signaling pathway.


Assuntos
Resistência à Insulina/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Animais , Linhagem Celular , Estimulação Elétrica , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Palmitatos/farmacologia
9.
J Cardiovasc Pharmacol ; 70(2): 61-73, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28763371

RESUMO

Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as ß-adrenergic receptor (ßAR). Given that ßARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating ßAR function.


Assuntos
Citocinas/fisiologia , Mediadores da Inflamação/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Transdução de Sinais/fisiologia
10.
J Biol Chem ; 290(13): 8527-38, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25666618

RESUMO

Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Filaminas/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Sequência Consenso , Humanos , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosforilação
11.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1199-205, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27130529

RESUMO

The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) α and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by ß-blocker also restored NO formation by PAH cells, identifying one mechanism by which ß-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.


Assuntos
Células Endoteliais/enzimologia , Hipertensão Pulmonar/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Processamento de Proteína Pós-Traducional , Adulto , Células Cultivadas , Feminino , Humanos , Hipertensão Pulmonar/patologia , Pulmão/enzimologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/biossíntese , Fosforilação , Proteína Quinase C/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(45): 18162-7, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145431

RESUMO

Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hiperamonemia/fisiopatologia , Cirrose Hepática/complicações , Miostatina/metabolismo , NF-kappa B/metabolismo , Acetatos , Animais , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Hiperamonemia/etiologia , Immunoblotting , Camundongos , Camundongos Knockout , Microscopia Confocal , Fibras Musculares Esqueléticas/metabolismo , Miostatina/genética , Reação em Cadeia da Polimerase em Tempo Real
13.
Biochemistry ; 54(44): 6673-83, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26460884

RESUMO

Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR-cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm.


Assuntos
Filaminas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Filaminas/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
14.
Circulation ; 128(4): 377-87, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23785004

RESUMO

BACKGROUND: Proinflammatory cytokine tumor necrosis factor-α (TNFα) induces ß-adrenergic receptor (ßAR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known. METHODS AND RESULTS: Two different proinflammatory transgenic mouse models with cardiac overexpression of myotrophin (a prohypertrophic molecule) or TNFα showed that TNFα alone is sufficient to mediate ßAR desensitization as measured by cardiac adenylyl cyclase activity. M-mode echocardiography in these mouse models showed cardiac dysfunction paralleling ßAR desensitization independent of sympathetic overdrive. TNFα-mediated ßAR desensitization that precedes cardiac dysfunction is associated with selective upregulation of G-protein coupled receptor kinase 2 (GRK2) in both mouse models. In vitro studies in ß2AR-overexpressing human embryonic kidney 293 cells showed significant ßAR desensitization, GRK2 upregulation, and recruitment to the ßAR complex following TNFα. Interestingly, inhibition of phosphoinositide 3-kinase abolished GRK2-mediated ßAR phosphorylation and GRK2 recruitment on TNFα. Furthermore, TNFα-mediated ßAR phosphorylation was not blocked with ßAR antagonist propranolol. Additionally, TNFα administration in transgenic mice with cardiac overexpression of Gßγ-sequestering peptide ßARK-ct could not prevent ßAR desensitization or cardiac dysfunction showing that GRK2 recruitment to the ßAR is Gßγ independent. Small interfering RNA knockdown of GRK2 resulted in the loss of TNFα-mediated ßAR phosphorylation. Consistently, cardiomyocytes from mice with cardiac-specific GRK2 ablation normalized the TNFα-mediated loss in contractility, showing that TNFα-induced ßAR desensitization is GRK2 dependent. CONCLUSIONS: TNFα-induced ßAR desensitization is mediated by GRK2 and is independent of Gßγ, uncovering a hitherto unknown cross-talk between TNFα and ßAR function, providing the underpinnings of inflammation-mediated cardiac dysfunction.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Modelos Animais de Doenças , Células HEK293 , Insuficiência Cardíaca/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/fisiologia , Propranolol/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Sistema Nervoso Simpático/fisiologia , Fator de Necrose Tumoral alfa/genética
15.
Lab Invest ; 94(10): 1083-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046438

RESUMO

A specific role for Akt1 in events following myocardial infarction (MI) and ischemia/reperfusion (I/R) injury is not known. We aimed to determine whether Akt1 deletion in in vivo mouse models of MI and after ischemia I/R injury would alter myocyte survival, cardiac function, and fibrosis. Akt1(+/+) and Akt1(-/-) mice were subjected to MI and I/R, followed by assessment of downstream signaling events and functional consequences. Although no difference in infarct size following short-term MI was observed between Akt1(+/+) and Akt1(-/-) mice, I/R caused substantially more cardiomyocyte apoptosis and tissue damage in Akt1(-/-) mice compared with Akt1(+/+). Importantly, these effects were reversed upon pretreatment with GSK-3 inhibitor SB415286. Counterintuitively, Akt1(-/-) hearts exhibited improved cardiac function following long-term MI compared with Akt1(+/+) and were associated with reduced fibrosis in the left ventricle (LV). Our results demonstrate that Akt1-mediated inhibition of GSK-3 activity is critical for cardioprotection following I/R. However, in the long term, Akt1 contributes to fibrosis in post-MI hearts and might exacerbate cardiac dysfunction showing dichotomous role for Akt1 in cardiac remodeling after MI. Our data suggest that better understanding of the Akt1/GSK-3 pathway may provide insights for better therapeutic strategies in post-MI tissues.


Assuntos
Apoptose , Quinase 3 da Glicogênio Sintase/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Feminino , Fibrose , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Remodelação Ventricular , beta Catenina/metabolismo
16.
J Mol Cell Cardiol ; 62: 131-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23735785

RESUMO

High fidelity genome-wide expression analysis has strengthened the idea that microRNA (miRNA) signatures in peripheral blood mononuclear cells (PBMCs) can be potentially used to predict the pathology when anatomical samples are inaccessible like the heart. PBMCs from 48 non-failing controls and 44 patients with relatively stable chronic heart failure (ejection fraction of ≤ 40%) associated with dilated cardiomyopathy (DCM) were used for miRNA analysis. Genome-wide miRNA-microarray on PBMCs from chronic heart failure patients identified miRNA signature uniquely characterized by the downregulation of miRNA-548 family members. We have also independently validated downregulation of miRNA-548 family members (miRNA-548c & 548i) using real time-PCR in a large cohort of independent patient samples. Independent in silico Ingenuity Pathway Analysis (IPA) of miRNA-548 targets shows unique enrichment of signaling molecules and pathways associated with cardiovascular disease and hypertrophy. Consistent with specificity of miRNA changes with pathology, PBMCs from breast cancer patients showed no alterations in miRNA-548c expression compared to healthy controls. These studies suggest that miRNA-548 family signature in PBMCs can therefore be used to detect early heart failure. Our studies show that cognate networking of predicted miRNA-548 targets in heart failure can be used as a powerful ancillary tool to predict the ongoing pathology.


Assuntos
Cardiomiopatia Dilatada/genética , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , Neoplasias da Mama/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade
17.
Mol Pharmacol ; 83(5): 939-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404509

RESUMO

The role of α1-adrenergic receptors (ARs) in the regulation of cardiac hypertrophy is still unclear, because transgenic mice demonstrated hypertrophy or the lack of it despite high receptor overexpression. To further address the role of the α1-ARs in cardiac hypertrophy, we analyzed unique transgenic mice that overexpress constitutively active mutation (CAM) α1A-ARs or CAM α1B-ARs under the regulation of large fragments of their native promoters. These constitutively active receptors are expressed in all tissues that endogenously express their wild-type counterparts as opposed to only myocyte-targeted transgenic mice. In this study, we discovered that CAM α1A-AR mice in vivo have cardiac hypertrophy independent of changes in blood pressure, corroborating earlier studies, but in contrast to myocyte-targeted α1A-AR mice. We also found cardiac hypertrophy in CAM α1B-AR mice, in agreement with previous studies, but hypertrophy only developed in older mice. We also discovered unique α1-AR-mediated hypertrophic signaling that was AR subtype-specific with CAM α1A-AR mice secreting atrial naturietic factor and interleukin-6 (IL-6), whereas CAM α1B-AR mice expressed activated nuclear factor-κB (NF-κB). These particular hypertrophic signals were blocked when the other AR subtype was coactivated. We also discovered that crossbreeding the two CAM models (double CAM α1A/B-AR) inhibited the development of hypertrophy and was reversible with single receptor activation, suggesting that coactivation of the receptors can lead to novel antagonistic signal transduction. This was confirmed by demonstrating antagonistic signals that were even lower than normal controls in the double CAM α1A/B-AR mice for p38, NF-κB, and the IL-6/glycoprotein 130/signal transducer and activator of transcription 3 pathway. Because α1A/B double knockout mice fail to develop hypertrophy in response to IL-6, our results suggest that IL-6 is a major mediator of α1A-AR cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Interleucina-6/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Biol Chem ; 286(49): 42435-42445, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22020933

RESUMO

Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Apoptose , Sobrevivência Celular , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Fosfatos de Inositol/química , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Fosfatos de Fosfatidilinositol/química , Fosfolipídeos/química , Estrutura Terciária de Proteína , Prótons , Sódio/química , Trocador 1 de Sódio-Hidrogênio , Ressonância de Plasmônio de Superfície , Suínos
19.
Am J Physiol Endocrinol Metab ; 303(8): E983-93, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895779

RESUMO

Hyperammonemia and sarcopenia (loss of skeletal muscle) are consistent abnormalities in cirrhosis and portosystemic shunting. We have shown that muscle ubiquitin-proteasome components are not increased with hyperammonemia despite sarcopenia. This suggests that an alternative mechanism of proteolysis contributes to sarcopenia in cirrhosis. We hypothesized that autophagy could be this alternative pathway since we observed increases in classic autophagy markers, increased LC3 lipidation, beclin-1 expression, and p62 degradation in immunoblots of skeletal muscle protein in cirrhotic patients. We observed similar changes in these autophagy markers in the portacaval anastamosis (PCA) rat model. To determine the mechanistic relationship between hyperammonemia and autophagy, we exposed murine C(2)C(12) myotubes to ammonium acetate. Significant increases in LC3 lipidation, beclin-1 expression, and p62 degradation occurred by 1 h, whereas autophagy gene expression (LC3, Atg5, Atg7, beclin-1) increased at 24 h. C(2)C(12) cells stably expressing GFP-LC3 or GFP-mCherry-LC3 constructs showed increased formation of mature autophagosomes supported by electron microscopic studies. Hyperammonemia also increased autophagic flux in mice, as quantified by an in vivo autophagometer. Because hyperammonemia induces nitration of proteins in astrocytes, we quantified global muscle protein nitration in cirrhotic patients, in the PCA rat, and in C(2)C(12) cells treated with ammonium acetate. Increased protein nitration was observed in all of these systems. Furthermore, colocalization of nitrated proteins with GFP-LC3-positive puncta in hyperammonemic C(2)C(12) cells suggested that autophagy is involved in degradation of nitrated proteins. These observations show that increased skeletal muscle autophagy in cirrhosis is mediated by hyperammonemia and may contribute to sarcopenia of cirrhosis.


Assuntos
Autofagia/fisiologia , Hiperamonemia/patologia , Cirrose Hepática/patologia , Músculo Esquelético/patologia , Sarcopenia/patologia , Animais , Linhagem Celular , Células Cultivadas , Imunofluorescência , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Derivação Portocava Cirúrgica , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Tirosina/análogos & derivados , Tirosina/metabolismo
20.
Nat Cell Biol ; 7(8): 785-96, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16094730

RESUMO

Phosphoinositide 3-kinase (PI(3)K) is a unique enzyme characterized by both lipid and protein kinase activities. Here, we demonstrate a requirement for the protein kinase activity of PI(3)K in agonist-dependent beta-adrenergic receptor (betaAR) internalization. Using PI(3)K mutants with either protein or lipid phosphorylation activity, we identify the cytoskeletal protein non-muscle tropomyosin as a substrate of PI(3)K, which is phosphorylated in a wortmannin-sensitive manner on residue Ser 61. A constitutively dephosphorylated (S61A) tropomyosin mutant blocks agonist-dependent betaAR internalization, whereas a tropomyosin mutant that mimics constitutive phosphorylation (S61D) complements the PI(3)K mutant, with only lipid phosphorylation activity reversing the defective betaAR internalization. Notably, knocking down endogenous tropomyosin expression using siRNAs that target different regions if tropomyosin resulted in complete inhibition of betaAR endocytosis, showing that non-muscle tropomyosin is essential for agonist-mediated receptor internalization. These studies demonstrate a previously unknown role for the protein phosphorylation activity of PI(3)K in betaAR internalization and identify non-muscle tropomyosin as a cellular substrate for protein kinase activity of PI(3)K.


Assuntos
Endocitose/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Actinas/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Androstadienos/farmacologia , Arrestinas/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histonas/metabolismo , Humanos , Modelos Biológicos , Mutação/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção , Transferrina/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo , Wortmanina , Quinases de Receptores Adrenérgicos beta , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA