Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 476: 116675, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661062

RESUMO

Methodical screening of safe and efficient drug candidate compounds is crucial for drug development. A high-throughput and accurate compound evaluation method targeting the central nervous system can be developed using in vitro neural networks. In particular, an evaluation system based on a human-derived neural network that can act as an alternative to animal experiments is desirable to avoid interspecific differences. A microelectrode array (MEA) is one such evaluation system, and can measure in vitro neural activity; however, studies on compound evaluation criteria and in vitro to in vivo extrapolation are scarce. In this study, we identified the parameters that can eliminate the effects of solvents from neural activity data obtained using MEA allow for accurate compound evaluation. Additionally, we resolved the issue associated with compound evaluation criteria during MEA using principal component analysis by considering the neuronal activity exceeding standard deviation (SD) of the solvent as indicator of seizurogenic potential. Overall, 10 seizurogenic compounds and three negative controls were assessed using MEA-based co-cultured human-induced pluripotent stem cell-derived neurons and astrocytes, and primary rat cortical neurons. In addition, we determined rat cerebrospinal fluid (CSF) concentrations during tremor and convulsion in response to exposure to test compounds. To characterize the in vitro to in vivo extrapolation and species differences, we compared the concentrations at which neuronal activity exceeding the SD range of the solvent was detectable using the MEA system and rat CSF concentration.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Ratos , Neurônios , Convulsões , Solventes
2.
Biochem Biophys Rep ; 28: 101148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34693037

RESUMO

Brain organoids with three-dimensional structure and tissue-like function are highly demanded for brain disease research and drug evaluation. However, to our knowledge, methods for measuring and analyzing brain organoid function have not been developed yet. This study focused on the frequency components of an obtained waveform below 500 Hz using planner microelectrode array (MEA) and evaluated the response to the convulsants pentylenetetrazol (PTZ) and strychnine as well as the antiepileptic drugs (AEDs) perampanel and phenytoin. Sudden and persistent seizure-like firing was observed with PTZ administration, displaying a concentration-dependent periodic activity with the frequency component enhanced even in one oscillation characteristic. On the other hand, in the administration of AEDs, the frequency of oscillation decreased in a concentration-dependent manner and the intensity of the frequency component in one oscillation also decreased. Interestingly, at low doses of phenytoin, a group of synchronized bursts was formed, which was different from the response to the perampanel. Frequency components contained information on cerebral organoid function, and MEA was proven useful in predicting the seizure liability of drugs and evaluating the effect of AEDs with a different mechanism of action. In addition, frequency component analysis of brain organoids using MEA is an important analysis method to perform in vitro to in vivo extrapolation in the future, which will help explore the function of the organoid itself, study human brain developments, and treat various brain diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA