Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 34(11): R544-R546, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38834029

RESUMO

The genomes of extant organisms contain conserved blocks of regions that can be traced back to ancient ancestors, yet the evolutionary pressures that maintained such genomic segments remain unclear. New research on a curious organism with two different genomes sheds light on why our genomes are organized as they are.


Assuntos
Evolução Molecular , Genoma , Animais , Ligação Genética , Humanos
2.
PLoS One ; 18(8): e0286941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639389

RESUMO

In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.


Assuntos
Feiticeiras (Peixe) , Animais , Masculino , Biologia Computacional , DNA , Eucromatina , Feiticeiras (Peixe)/genética , Hibridização in Situ Fluorescente
3.
Sci Rep ; 12(1): 21373, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494570

RESUMO

In the Japanese hagfish Eptatretus burgeri, 16 chromosomes (eliminated [E]-chromosomes) have been lost in somatic cells (2n = 36), which is equivalent to approx. 21% of the genomic DNA in germ cells (2n = 52). At least seven of the 12 eliminated repetitive DNA families isolated in eight hagfish species were selectively amplified in the germline genome of this species. One of them, EEEb1 (eliminated element of E. burgeri 1) is exclusively localized on all E-chromosomes. Herein, we identified four novel eliminated repetitive DNA families (named EEEb3-6) through PCR amplification and suppressive subtractive hybridization (SSH) combined with Southern-blot hybridization. EEEb3 was mosaic for 5S rDNA and SINE elements. EEEb4 was GC-rich repeats and has one pair of direct and inverted repeats, whereas EEEb5 and EEEb6 were AT-rich repeats with one pair and two pairs of sub-repeats, respectively. Interestingly, all repeat classes except EEEb3 were transcribed in the testes, although no open reading frames (ORF) were identified. We conducted fluorescence in situ hybridization (FISH) to examine the chromosomal localizations of EEEb3-6 and EEEb2, which was previously isolated from the germline genome of E. burgeri. All sequences were only found on all EEEb1-positive E-chromosomes. Copy number estimation of the repeated elements by slot-blot hybridization revealed that (i) the EEEb1-6 family members occupied 39.9% of the total eliminated DNA, and (ii) a small number of repeats were retained in somatic cells, suggesting that there is incomplete elimination of the repeated elements. These results provide new insights into the mechanisms involved in the chromosome elimination and the evolution of E-chromosomes.


Assuntos
Feiticeiras (Peixe) , Animais , Sequência de Bases , DNA Ribossômico , Células Germinativas , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico
4.
J Am Chem Soc ; 130(24): 7566-7, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18505255

RESUMO

The synthesis of corilagin was achieved by the integration of the development of the oxidative coupling of the symmetrically protected gallates and the temporarily ring-opened synthetic route for the 3,6-hexahydroxydiphenoyl (HHDP) bridge. This is the first total synthesis of the 1C4/B-ellagitannins, which contain ring-flipped glucose.


Assuntos
Glucosídeos/síntese química , Ácido Gálico/química , Glucose/química , Taninos Hidrolisáveis , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA