Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 168(1-2): 210-223.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086092

RESUMO

Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development.


Assuntos
Ciclo do Ácido Cítrico , Genoma , Zigoto/metabolismo , Animais , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Glicosilação , Histonas/metabolismo , Cetona Oxirredutases/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo
2.
Genes Dev ; 26(18): 2027-37, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22925885

RESUMO

Mitochondrial structure and function are highly dynamic, but the potential roles for cell signaling pathways in influencing these properties are not fully understood. Reduced mitochondrial function has been shown to cause cell cycle arrest, and a direct role of signaling pathways in controlling mitochondrial function during development and disease is an active area of investigation. Here, we show that the conserved Yorkie/YAP signaling pathway implicated in the control of organ size also functions in the regulation of mitochondria in Drosophila as well as human cells. In Drosophila, activation of Yorkie causes direct transcriptional up-regulation of genes that regulate mitochondrial fusion, such as opa1-like (opa1) and mitochondria assembly regulatory factor (Marf), and results in fused mitochondria with dramatic reduction in reactive oxygen species (ROS) levels. When mitochondrial fusion is genetically attenuated, the Yorkie-induced cell proliferation and tissue overgrowth are significantly suppressed. The function of Yorkie is conserved across evolution, as activation of YAP2 in human cell lines causes increased mitochondrial fusion. Thus, mitochondrial fusion is an essential and direct target of the Yorkie/YAP pathway in the regulation of organ size control during development and could play a similar role in the genesis of cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Proteínas Nucleares/genética , Fenótipo , Transativadores/genética , Proteínas de Sinalização YAP
3.
EMBO J ; 28(4): 337-46, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19153610

RESUMO

Spatial and temporal control of Notch and Wingless (Wg) pathways during development is regulated at multiple levels. Here, we present an analysis of Phyllopod as a coordinated regulator of these two critical signal transduction pathways. Phyl specifically helps traffic Notch and Wg pathway components within early endocytic vesicles, thereby controlling the amount of processed signal available for causing a transcriptional response within the nucleus. In Drosophila, the EGFR pathway transcriptionally activates phyl whose product then blocks Notch and Wg signalling pathways. This provides a mechanistic basis for an antagonistic relationship between receptor tyrosine kinase and Notch/Wg pathways during development. Furthermore, this study identifies a Phyl-regulated class of endosomal vesicles that specifically include components of Notch and Wg signalling.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Proteína Wnt1/metabolismo , Animais , Núcleo Celular/metabolismo , Cruzamentos Genéticos , Regulação para Baixo , Drosophila melanogaster/metabolismo , Endocitose , Imuno-Histoquímica/métodos , Modelos Biológicos , Mutação , Fenótipo , Fatores de Tempo
4.
Sci Signal ; 16(810): eabo5213, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934809

RESUMO

Dysregulated Notch signaling is a common feature of cancer; however, its effects on tumor initiation and progression are highly variable, with Notch having either oncogenic or tumor-suppressive functions in various cancers. To better understand the mechanisms that regulate Notch function in cancer, we studied Notch signaling in a Drosophila tumor model, prostate cancer-derived cell lines, and tissue samples from patients with advanced prostate cancer. We demonstrated that increased activity of the Src-JNK pathway in tumors inactivated Notch signaling because of JNK pathway-mediated inhibition of the expression of the gene encoding the Notch S2 cleavage protease, Kuzbanian, which is critical for Notch activity. Consequently, inactive Notch accumulated in cells, where it was unable to transcribe genes encoding its target proteins, many of which have tumor-suppressive activities. These findings suggest that Src-JNK activity in tumors predicts Notch activity status and that suppressing Src-JNK signaling could restore Notch function in tumors, offering opportunities for diagnosis and targeted therapies for a subset of patients with advanced prostate cancer.


Assuntos
Proteínas de Drosophila , Neoplasias da Próstata , Animais , Masculino , Humanos , Proteínas de Drosophila/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Drosophila , Transdução de Sinais , Neoplasias da Próstata/metabolismo
5.
Dev Cell ; 53(1): 9-26.e4, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32197068

RESUMO

The mouse embryo undergoes compaction at the 8-cell stage, and its transition to 16 cells generates polarity such that the outer apical cells are trophectoderm (TE) precursors and the inner cell mass (ICM) gives rise to the embryo. Here, we report that this first cell fate specification event is controlled by glucose. Glucose does not fuel mitochondrial ATP generation, and glycolysis is dispensable for blastocyst formation. Furthermore, glucose does not help synthesize amino acids, fatty acids, and nucleobases. Instead, glucose metabolized by the hexosamine biosynthetic pathway (HBP) allows nuclear localization of YAP1. In addition, glucose-dependent nucleotide synthesis by the pentose phosphate pathway (PPP), along with sphingolipid (S1P) signaling, activates mTOR and allows translation of Tfap2c. YAP1, TEAD4, and TFAP2C interact to form a complex that controls TE-specific gene transcription. Glucose signaling has no role in ICM specification, and this process of developmental metabolism specifically controls TE cell fate.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Proteínas de Homeodomínio/metabolismo , Animais , Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Fatores de Transcrição/metabolismo
6.
Dev Biol ; 323(1): 105-13, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18761008

RESUMO

We show here that the Drosophila MADF/BESS domain transcription factor Dip3, which is expressed in differentiating photoreceptors, regulates neuronal differentiation in the compound eye. Loss of Dip3 activity in photoreceptors leads to an extra photoreceptor in many ommatidia, while ectopic expression of Dip3 in non-neuronal cells results in photoreceptor loss. These findings are consistent with the idea that Dip3 is required non-cell autonomously to block extra photoreceptor formation. Dip3 may mediate the spatially restricted potentiation of Notch (N) signaling since the Dip3 misexpression phenotype is suppressed by reducing N signaling and misexpression of Dip3 leads to ectopic activity of a N-responsive enhancer. Analysis of mosaic ommatidia suggests that no specific photoreceptor must be mutant to generate the mutant phenotype. Remarkably, however, mosaic pupal ommatidia with three or fewer Dip3(+) photoreceptors always differentiate an extra photoreceptor, while those with four or more Dip3(+) photoreceptors never differentiate an extra photoreceptor. These findings are consistent with the notion that Dip3 in photoreceptors activates a heretofore unsuspected diffusible ligand that may work in conjunction with the N pathway to prevent a subpopulation of undifferentiated cells from choosing a neuronal fate.


Assuntos
Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Drosophila/embriologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Modelos Biológicos , Mutação , Neurônios/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Fatores de Transcrição/genética
7.
Int J Dev Biol ; 48(8-9): 755-60, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15558468

RESUMO

Drosophila eye development provides an excellent model system to study the role of inter-cellular signaling in the specification of unique cell fates. Behavioral screens by Benzer and his colleagues led to the identification of a gene, Sevenless, a receptor tyrosine kinase (RTK) receptor, required for the specification of the UV sensitive R7 cell. Genetic analysis further showed that the Ras/Raf/MAPK pathway function downstream of Sevenless in the specification of R7 fate. Signaling mediated by another RTK, EGFR and Notch have also been shown to function in either an antagonistic or a synergistic manner in the specification of cell fate during eye development. In some instances, these pathways are linked in a sequential manner by the regulation of the expression of Notch ligand, Delta by EGFR, while in others, these pathways function in a combinatorial fashion on enhancer elements to control target gene expression. In this review, we highlight the elegant genetic strategies used by several laboratories in early elucidation of the Sevenless pathway which helped link the RTK receptor to the Ras/Raf/MAPK cascade and discuss how EGFR and Notch signaling pathways are used in a reiterative manner and by combining in different modes, generate sufficient diversity required for the specification of unique cell fates.


Assuntos
Modelos Genéticos , Células Fotorreceptoras de Invertebrados/embriologia , Transdução de Sinais , Animais , Caenorhabditis elegans , Linhagem da Célula , Drosophila/embriologia , Proteínas de Drosophila , Drosophila melanogaster , Luz , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Receptores Notch , Raios Ultravioleta
8.
Dev Cell ; 19(1): 54-65, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20643350

RESUMO

The binding of Hedgehog (Hh) to its receptor Patched causes derepression of Smoothened (Smo), resulting in the activation of the Hh pathway. Here, we show that Smo activation is dependent on the levels of the phospholipid phosphatidylinositol-4 phosphate (PI4P). Loss of STT4 kinase, which is required for the generation of PI4P, exhibits hh loss-of-function phenotypes, whereas loss of Sac1 phosphatase, which is required for the degradation of PI4P, results in hh gain-of-function phenotypes in multiple settings during Drosophila development. Furthermore, loss of Ptc function, which results in the activation of Hh pathway, also causes an increase in PI4P levels. Sac1 functions downstream of STT4 and Ptc in the regulation of Smo membrane localization and Hh pathway activation. Taken together, our results suggest a model in which Ptc directly or indirectly functions to suppress the accumulation of PI4P. Binding of Hh to Ptc derepresses the levels of PI4P, which, in turn, promotes Smo activation.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Metabolismo dos Lipídeos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Animais Geneticamente Modificados , Caspase 3/metabolismo , Drosophila/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Olho/metabolismo , Genes de Insetos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mutação , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Receptor Smoothened , Proteína Wnt1/metabolismo
9.
Development ; 134(5): 825-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17251265

RESUMO

In the developing eye of Drosophila, the EGFR and Notch pathways integrate in a sequential, followed by a combinatorial, manner in the specification of cone-cell fate. Here, we demonstrate that the specification of primary pigment cells requires the reiterative use of the sequential integration between the EGFR and Notch pathways to regulate the spatiotemporal expression of Delta in pupal cone cells. The Notch signal from the cone cells then functions in the direct specification of primary pigment-cell fate. EGFR requirement in this process occurs indirectly through the regulation of Delta expression. Combined with previous work, these data show that unique combinations of only two pathways--Notch and EGFR--can specify at least five different cell types within the Drosophila eye.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Receptores ErbB/metabolismo , Epitélio Pigmentado Ocular/fisiologia , Receptores Notch/metabolismo , Animais , Padronização Corporal , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Olho/citologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/metabolismo , Epitélio Pigmentado Ocular/crescimento & desenvolvimento , Pupa , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
Cell ; 110(5): 625-37, 2002 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-12230979

RESUMO

The Notch and Epidermal Growth Factor Receptor (EGFR) pathways both regulate proliferation and differentiation, and the cellular response to each is often influenced by the other. Here, we describe a mechanism that links them in a sequential fashion, in the developing compound eye of Drosophila. EGFR activation induces photoreceptor (R cell) differentiation and promotes their expression of Delta. This Notch ligand then induces neighboring cells to become nonneuronal cone cells. ebi and strawberry notch (sno) regulate EGFR-dependent Delta transcription by antagonizing a repressor function of Suppressor of Hairless (Su(H)). Sno binds to Su(H), and Ebi, an F-box/WD40 protein, forms a complex with Su(H) and the corepressor SMRTER. EGFR-activated transcriptional derepression requires ebi and sno, is proteasome-dependent, and correlates with the translocation of SMRTER to the cytoplasm.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Ligação ao GTP , Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Drosophila , Receptores ErbB , Células Fotorreceptoras de Invertebrados , Receptores Notch , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA