Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Genes Cells ; 27(5): 317-330, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194888

RESUMO

Actin is a major structural component of the cytoskeleton in eukaryotic cells, including fungi, plants, and animals, and exists not only in the cytoplasm as cytoskeleton but also in the nucleus. Recently, we developed a novel actin probe, ß-actin-EGFP fusion protein, which exhibited similar monomeric to filamentous ratio as that of endogenous actin, in contrast to the widely used EGFP-ß-actin fusion protein that over-assembles in cells. Unexpectedly, this novel probe visualized an interconnected meshwork of slightly curved beam-like bundles of actin filaments in the nucleus of U2OS cells. These structures were not labeled with rhodamine phalloidin, Lifeact-EGFP or anti-actin antibodies. In addition, immunofluorescence staining and expression of cofilin-EGFP revealed that this nuclear actin structures contained cofilin. We named these actin filaments as phalloidin-negative intranuclear (PHANIN) actin filaments. Since PHANIN actin filaments could not be detected by general detection methods for actin filaments, we propose that PHANIN actin filaments are different from previously reported nuclear actin structures.


Assuntos
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Faloidina/análise , Faloidina/metabolismo
2.
Genes Cells ; 24(3): 202-213, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664308

RESUMO

Fascin, an actin-bundling protein, is present in the filopodia and lamellipodia of growth cones. However, few studies have examined lamellipodial fascin because it is difficult to observe. In this study, we evaluated lamellipodial fascin. We visualized the actin meshwork of lamellipodia in live growth cones by super-resolution microscopy. Fascin was colocalized with the actin meshwork in lamellipodia. Ser39 of fascin is a well-known phosphorylation site that controls the binding of fascin to actin filaments. Fluorescence recovery after photobleaching experiments with confocal microscopy showed that binding of fascin was controlled by phosphorylation of Ser39 in lamellipodia. Moreover, TPA, an agonist of protein kinase C, induced phosphorylation of fascin and dissociation from actin filaments in lamellipodia. Time series images showed that dissociation of fascin from the actin meshwork was induced by TPA. As fascin dissociated from actin filaments, the orientation of the actin filaments became parallel to the leading edge. The angle of actin filaments against the leading edge was changed from 73° to 15°. This decreased the elasticity of the lamellipodia by 40%, as measured by atomic force microscopy. These data suggest that actin bundles made by fascin contribute to elasticity of the growth cone.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas de Transporte/química , Linhagem Celular , Elasticidade , Recuperação de Fluorescência Após Fotodegradação , Camundongos , Proteínas dos Microfilamentos/química , Fosforilação , Pseudópodes/ultraestrutura
3.
Exp Cell Res ; 376(1): 67-76, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711568

RESUMO

Nonmuscle myosin II (NMII) plays an important role in cytokinesis by constricting a contractile ring. However, it is poorly understood how NMII isoforms contribute to cytokinesis in mammalian cells. Here, we investigated the roles of the two major NMII isoforms, NMIIA and NMIIB, in cytokinesis using a WI-38 VA13 cell line (human immortalized fibroblast). In this cell line, NMIIB tended to localize to the contractile ring more than NMIIA. The expression level of NMIIA affected the localization of NMIIB. Most NMIIB accumulated at the cleavage furrow in NMIIA-knockout (KO) cells, and most NMIIA was displaced from this location in exogenous NMIIB-expressing cells, indicating that NMIIB preferentially localizes to the contractile ring. Specific KO of each isoform elicited opposite effects. The rate of furrow ingression was decreased and increased in NMIIA-KO and NMIIB-KO cells, respectively. Meanwhile, the length of NMII-filament stacks in the contractile ring was increased and decreased in NMIIA-KO and NMIIB-KO cells, respectively. Moreover, NMIIA helped to maintain cortical stiffness during cytokinesis. These findings suggest that appropriate ratio of NMIIA and NMIIB in the contractile ring is important for proper cytokinesis in specific cell types. In addition, two-photon excitation spinning-disk confocal microscopy enabled us to image constriction of the contractile ring in live cells in a three-dimensional manner.


Assuntos
Citocinese/genética , Contração Muscular/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Citoesqueleto de Actina/genética , Linhagem Celular , Linhagem da Célula/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Isoformas de Proteínas/genética
4.
Plasmid ; 98: 37-44, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30196057

RESUMO

The CRISPR/Cas9 system is a powerful genome editing tool for disrupting the expression of specific genes in a variety of cells. However, the genome editing procedure using currently available vectors is laborious, and there is room for improvement to obtain knockout cells more efficiently. Therefore, we constructed a novel vector for high efficiency genome editing, named pGedit, which contains EGFP-Bsr as a selection marker, expression units of Cas9, and sgRNA without a terminator sequence of the U6 promoter. EGFP-Bsr is a fusion protein of EGFP and blasticidin S deaminase, and enables rapid selection and monitoring of transformants, as well as confirmation that the vector has not been integrated into the genome. By using pGedit, we targeted human ACTB, ACTG1 and mouse Nes genes coding for ß-actin, γ-actin and nestin, respectively. Knockout cell lines of each gene were easily and efficiently obtained in all three cases. In this report, we show that our novel vector, pGedit, significantly facilitates genome editing.


Assuntos
Actinas/antagonistas & inibidores , Sistemas CRISPR-Cas , Edição de Genes/métodos , Vetores Genéticos , Nestina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Actinas/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Animais , Sequência de Bases , Marcação de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Nestina/genética , Regiões Promotoras Genéticas , Homologia de Sequência
5.
Cell Struct Funct ; 42(2): 131-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855440

RESUMO

Actin, a major component of microfilaments, is involved in various eukaryotic cellular functions. Over the past two decades, actin fused with fluorescent protein has been used as a probe to detect the organization and dynamics of the actin cytoskeleton in living eukaryotic cells. It is generally assumed that the expression of fusion protein of fluorescent protein does not disturb the distribution of endogenous actin throughout the cell, and that the distribution of the fusion protein reflects that of endogenous actin. However, we noticed that EGFP-ß-actin caused the excessive formation of microfilaments in several mammalian cell lines. To investigate whether the position of the EGFP tag on actin affected the formation of filaments, we constructed an expression vector harboring a ß-actin-EGFP gene. In contrast to EGFP-ß-actin, cells expressing ß-actin-EGFP showed actin filaments in a high background from the monomer actin in cytosol. Additionally, the detergent insoluble assay revealed that the majority of the detergent-insoluble cytoskeleton from cells expressing EGFP-ß-actin was recovered in the pellet. Furthermore, we found that the expression of EGFP-ß-actin affects the migration of NBT-L2b cells and the mechanical stiffness of U2OS cells. These results indicate that EGFP fused to the N-terminus of actin tend to form excessive actin filaments. In addition, EGFP-actin affects both the cellular morphological and physiological phenotypes as compared to actin-EGFP.Key words: actin, GFP, cytoskeleton and probe.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Citoesqueleto de Actina/química , Actinas/análise , Actinas/química , Animais , Linhagem Celular , Citosol/química , Citosol/metabolismo , Proteínas de Fluorescência Verde/análise , Humanos , Mamíferos
6.
BMC Genet ; 16: 9, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652422

RESUMO

BACKGROUND: Cell migration plays a major role in a variety of normal biological processes, and a detailed understanding of the associated mechanisms should lead to advances in the medical sciences in areas such as cancer therapy. Previously, we developed a simple chip, based on transfected-cell microarray (TCM) technology, for the identification of genes related to cell migration. In the present study, we used the TCM chip for high-throughput screening (HTS) of a kinome siRNA library to identify genes involved in the motility of highly invasive NBT-L2b cells. RESULTS: We performed HTS using TCM coupled with a programmed image tracer to capture time-lapse fluorescence images of siRNA-transfected cells and calculated speeds of cell movement. This first screening allowed us to identify 52 genes. After quantitative PCR (qPCR) and a second screening by a conventional transfection method, we confirmed that 32 of these genes were associated with the migration of NBT-L2b cells. We investigated the subcellular localization of proteins and levels of expression of these 32 genes, and then we used our results and databases of protein-protein interactions (PPIs) to construct a hypothetic but comprehensive signal network for cell migration. CONCLUSIONS: The genes that we identified belonged to several functional categories, and our pathway analysis suggested that some of the encoded proteins functioned as the hubs of networks required for cell migration. Our signal pathways suggest that epidermal growth factor receptor (EGFR) is an upstream regulator in the network, while Src and GRB2 seem to represent nodes for control of respective the downstream proteins that are required to coordinate the many cellular events that are involved in migration. Our microarray appears to be a useful tool for the analysis of protein networks and signal pathways related to cancer metastasis.


Assuntos
Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosfotransferases/análise , Análise Serial de Tecidos/métodos , Movimento Celular , Biblioteca Gênica , Células HL-60 , Células HeLa , Humanos , RNA Interferente Pequeno , Transdução de Sinais
7.
J Biol Chem ; 288(3): 1739-49, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23212920

RESUMO

Conserved Asp-11 of actin is a part of the nucleotide binding pocket, and its mutation to Gln is dominant lethal in yeast, whereas the mutation to Asn in human α-actin dominantly causes congenital myopathy. To elucidate the molecular mechanism of those dominant negative effects, we prepared Dictyostelium versions of D11N and D11Q mutant actins and characterized them in vitro. D11N and D11Q actins underwent salt-dependent reversible polymerization, although the resultant polymerization products contained small anomalous structures in addition to filaments of normal appearance. Both monomeric and polymeric D11Q actin released bound nucleotides more rapidly than the wild type, and intriguingly, both monomeric and polymeric D11Q actins hardly bound cofilin. The deficiency in cofilin binding can be explained by rapid exchange of bound nucleotide with ATP in solution, because cofilin does not bind ATP-bound actin. Copolymers of D11Q and wild type actins bound cofilin, but cofilin-induced depolymerization of the copolymers was slower than that of wild type filaments, which may presumably be the primary reason why this mutant actin is dominantly toxic in vivo. Purified D11N actin was unstable, which made its quantitative biochemical characterization difficult. However, monomeric D11N actin released nucleotides even faster than D11Q, and we speculate that D11N actin also exerts its toxic effects in vivo through a defective interaction with cofilin. We have recently found that two other dominant negative actin mutants are also defective in cofilin binding, and we propose that the defective cofilin binder is a major class of dominant negative actin mutants.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Ácido Aspártico/metabolismo , Dictyostelium/metabolismo , Nucleotídeos/metabolismo , Proteínas de Protozoários/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/genética , Actinas/química , Actinas/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Sítios de Ligação , Sequência Conservada , Dictyostelium/genética , Humanos , Cinética , Modelos Moleculares , Mutação , Nucleotídeos/genética , Plasmídeos , Polimerização , Ligação Proteica , Estabilidade Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfecção
8.
Cytoskeleton (Hoboken) ; 79(9-11): 94-104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36053962

RESUMO

Microtubule stability and dynamics regulations are essential for vital cellular processes, such as microtubule-dependent axonal transport. Dynamin is involved in many membrane fission events, such as clathrin-mediated endocytosis. The ubiquitously expressed dynamin-2 has been reported to regulate microtubule stability. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the roles of intrinsic properties of dynamin-2 on microtubule regulation by rescue experiments. A heterozygous DNM2 mutation in HeLa cells was generated, and an increase in the level of stabilized microtubules in these heterozygous cells was observed. The expression of wild-type dynamin-2 in heterozygous cells reduced stabilized microtubules. Conversely, the expression of self-assembly-defective mutants of dynamin-2 in the heterozygous cells failed to decrease stabilized microtubules. This indicated that the self-assembling ability of dynamin-2 is necessary for regulating microtubule stability. Moreover, the heterozygous cells expressing the GTPase-defective dynamin-2 mutant, K44A, reduced microtubule stabilization, similar to the cells expressing wild-type dynamin-2, suggesting that GTPase activity of dynamin-2 is not essential for regulating microtubule stability. These results showed that the mechanism of microtubule regulation by dynamin-2 is diverse from that of endocytosis.


Assuntos
Dinaminas , Endocitose , Microtúbulos , Humanos , Dinaminas/genética , Endocitose/fisiologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Microtúbulos/metabolismo
9.
Opt Express ; 19(4): 3799-808, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369204

RESUMO

We numerically investigate the polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes, through a full-vector modal solver based on the finite-element method (FEM). Firstly, we investigate the fundamental coupling properties between the core guided light and surface plasmon polaritons (SPPs) excited on the surface of metal wire. Secondly, we show that we can obtain highly polarization-dependent transmission characteristics in PCFs by introducing several metal wires closely aligned into the cladding, and reveal the strongly polarization-dependent coupling properties between the core guided modes and the SPP supermodes, which consist of discrete SPP modes. Finally, we show the importance of arranging the metal wires close to each other for high polarization-dependence.

10.
Curr Opin Cell Biol ; 16(1): 55-60, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15037305

RESUMO

Animal cell division is believed to be mediated primarily by the 'purse-string' mechanism, which entails furrowing of the equatorial region, driven by the interaction of actin and myosin II filaments within contractile rings. However, myosin II-null Dictyostelium cells on substrates divide efficiently in a cell cycle-coupled manner. This process, termed cytokinesis B, appears to be driven by polar traction forces. Data in the literature can be interpreted as suggesting that adherent higher animal cells also use a cytokinesis B-like mechanism for cytokinesis. An additional chemotaxis-based cytokinesis that involves a 'midwife' cell has also been reported. Collectively, these findings demonstrate an unexpected diversity of mechanisms by which animal cells carry out cytokinesis.


Assuntos
Divisão Celular/fisiologia , Animais , Movimento Celular , Dictyostelium/citologia , Dictyostelium/genética , Miosina não Muscular Tipo IIB/fisiologia
11.
Exp Cell Res ; 315(16): 2705-14, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19576212

RESUMO

The dynamics of astral and midzone microtubules (MTs) must be separately regulated during cell division, but the mechanism of selective stabilization of midzone MTs is poorly understood. Here we show that, in HT1080 cells, activation of Rho is required to stabilize midzone MTs, and to maintain the midzone structures after anaphase onset or during cytokinesis. Ect2-depleted cells undergoing conventional cytokinesis (cytokinesis A) or contractile ring-independent cytokinesis (cytokinesis B) formed abnormally thin bundles of midzone MTs. C3-loaded mitotic cells with inactivated Rho showed similar but more severe disorganization of midzone MTs. In addition, the bundles of astral MTs were abnormally abundant along the cell periphery in both Ect2-depleted and C3-loaded mitotic cells. Mitotic kinesin-like protein 1 (MKLP1), a component of the spindle midzone required for bundling of MTs, was localized only in the narrower equatorial regions in Ect2-depleted cells, and disappeared from the midzone accompanying the progression of the mitotic phase in C3-loaded cells. Stabilization of MTs by taxol was sufficient to maintain the midzone structures in C3-loaded mitotic cells. These results, when combined with a preceding analysis on another, microtubule-associated Rho GEF (C.J. Bakal, D. Finan, J. LaRose, C.D. Wells, G. Gish, S. Kulkarni, P. DeSepulveda, A. Wilde, R. Rottapel, The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 9529-9534), suggest that mammalian cells have two potential steps that require active Rho for the stabilization of midzone MTs during mitosis and cytokinesis.


Assuntos
Anáfase/fisiologia , Citocinese/fisiologia , Fibrossarcoma , Microtúbulos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Fuso Acromático/metabolismo , Moduladores de Tubulina/farmacologia , Proteínas rho de Ligação ao GTP/genética
12.
PLoS One ; 15(1): e0227477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31899919

RESUMO

Bioluminescent detection has become a powerful method that is used extensively in numerous areas in life science research. Given that fluorescence detection in plant cells is difficult owing to the autofluorescence of chlorophyll, the use of a luciferin-luciferase system should be effective in plant biology. However, the suitable optical window for a luminescence system in plants remains unexplored. In this study, we sought to determine the optical window and optimal luciferase reporter system for terrestrial plant analyses using Arabidopsis thaliana as a model organism. We compared six different luciferase systems and found the green enhanced Nano-lantern (GeNL)-furimazine combination to be the optimal luciferase reporter. Spectral measurements of GeNL-furimazine showed that its luminescence peak falls within the range of optical transparency for chlorophyll and, therefore, enables greater penetration through a layer of cultured A. thaliana cells. Moreover, A. thaliana plants expressing GeNL with furimazine emitted strong luminescence, which could be detected even with the naked eye. Thus, the GeNL-furimazine combination should facilitate biological analyses of genes and cellular functions in A. thaliana and all other terrestrial plants.


Assuntos
Arabidopsis/metabolismo , Genes Reporter , Luciferases/genética , Medições Luminescentes/métodos , Arabidopsis/genética , Concentração de Íons de Hidrogênio , Nanotecnologia , Plasmídeos/genética , Plasmídeos/metabolismo
13.
Eukaryot Cell ; 7(5): 906-16, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18375618

RESUMO

Talin is a cytoskeletal protein involved in constructing and regulating focal adhesions in animal cells. The cellular slime mold Dictyostelium discoideum has two talin homologues, talA and talB, and earlier studies have characterized the single knockout mutants. talA(-) cells show reduced adhesion to the substrates and slightly impaired cytokinesis leading to a high proportion of multinucleated cells in the vegetative stage, while the development is normal. In contrast, talB(-) cells are characterized by reduced motility in the developmental stage, and they are arrested at the tight-mound stage. Here, we created and analyzed a double mutant with a disruption of both talA and talB. Defects in adhesion to the substrates, cytokinesis, and development were more severe in cells with a disruption of both talA and talB. The talA(-) talB(-) cells failed to attach to the substrates in the vegetative stage, exhibited a higher proportion of multinucleated cells than talA(-) cells, and showed more-reduced motility during the development and an earlier developmental arrest than talB(-) cells at the loose-mound stage. Moreover, overexpression of either talA or talB compensated for the loss of the other talin, respectively. The analysis of talA(-) talB(-) cells also revealed that talin was required for the formation of paxillin-rich adhesion sites and that there was another adhesion mechanism which is independent of talin in the developmental stage. This is the first study demonstrating overlapping functions of two talin homologues, and our data further indicate the importance of talin.


Assuntos
Dictyostelium/fisiologia , Talina/genética , Talina/metabolismo , Animais , Ciclo Celular , Movimento Celular , Citocinese , Dictyostelium/química , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Adesões Focais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Estágios do Ciclo de Vida , Oligopeptídeos , Peptídeos/genética , Peptídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Talina/química
14.
Cell Motil Cytoskeleton ; 65(11): 896-903, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18688845

RESUMO

Interphase amoeba of Entamoeba invadens are attracted to the furrowing region of a neighboring dividing cell to assist with the division. A seemingly similar behavior has been observed in Dictyostelium discoideum, but in this case, it has not been shown whether the movements were truly directed toward the furrowing region or whether they have any relevance. We thus used myosin II-null cells, which spend more time than wild type cells in cytokinesis, and successfully demonstrated that nearly half of the division events involve the attraction of a neighbor cell to the furrowing region. Cells lacking the beta subunit of the trimeric G protein (Gbeta), which are incapable of chemotaxis, did not show such midwifery. Culturing wild type cells flattened under agarose sheets also slowed the cytokinesis process, and this allowed us to demonstrate that phosphatidylinositol trisphosphate was enriched in the anterior region of midwifing cells, consistent with the view that midwifery in D. discoideum is also chemotaxis. On substrates, while only 3.6% of wild type cells were multinucleate, 8.1% of Gbeta-null cells were multinucleate, and this was reduced to 3.4% when they were surrounded by wild type cells. Conversely, multinucleated wild type cells increased to 6.8% when they were surrounded by Gbeta-null cells. Thus, Gbeta-null cells frequently fail to divide because they cannot assist each other's division and midwifery ensures successful cytokinesis in Dictyostelium discoideum.


Assuntos
Quimiotaxia , Citocinese , Dictyostelium/genética , Dictyostelium/metabolismo , Animais , Divisão Celular , Linhagem Celular , Movimento Celular/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Genes de Protozoários , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
Cell Motil Cytoskeleton ; 65(12): 923-34, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18814278

RESUMO

Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity.


Assuntos
Citoesqueleto de Actina/metabolismo , Quimiotaxia , Dictyostelium/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Citoesqueleto de Actina/genética , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Cromonas/farmacologia , Citoesqueleto/metabolismo , Dictyostelium/genética , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Morfolinas/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tiazolidinas/farmacologia
16.
Cell Struct Funct ; 33(1): 27-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18344600

RESUMO

NBT-II cells on collagen-coated substrates move rapidly and persistently, maintaining a semi-circular shape with a large lamellipodium, in a manner similar to fish keratocytes. The inhibitor of phospholipase D (PLD), n-butanol, completely blocked the migration and disturbed the characteristic localization of actin along the edge of lamellipodia. To investigate the functional difference between the two isozymes of PLD (PLD1 and PLD2), we transfected NBT-II cells with vectors expressing shRNA to deplete PLD1 or PLD2. Depletion of both PLD1 and 2 by RNA interference reduced the velocity of the migration, but depletion of PLD2 inhibited motility more severely than that of PLD1. Furthermore, GFP-PLD2 was localized to the protruding regions of lamellipodia in migrating cells. Thus, PLD is essential for the maintenance of keratocyte-like locomotion of NBT-II cells, presumably by regulating the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Fosfolipase D/metabolismo , 1-Butanol/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , DNA Complementar/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fosfolipase D/genética , Pseudópodes/metabolismo , Interferência de RNA , Ratos , Transfecção
17.
Lab Chip ; 8(9): 1502-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18818805

RESUMO

Cell migration plays a major role in a variety of biological processes and a detailed understanding of associated mechanisms should lead to advances in the medical sciences, for example, in drug discovery for cancer therapy. However, the traditional methods used for analysis of cell migration cannot easily be scaled up for high-throughput screening. In this study, we have attempted to develop a novel simple method for high-throughput phenotypic screening for the identification of genes that are required for cell migration. As the appropriate cell line for the method, we found NBT-L2b cells that would be suitable for screening of migration-related genes in our method without influence by other cellular processes. Moreover, the idea for printing both the labeled fibronectin, for identification of the starting region of a cell, and the green fluorescent protein (GFP) expression vector, for identification of cells that had been transfected with siRNA and of the end point of migration, brings a rapid and efficient high-throughput screening procedure. Our new method will lead to an enhanced understanding of cell migration.


Assuntos
Movimento Celular/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transfecção , Transgenes/genética , Linhagem Celular Tumoral , Humanos , Fenótipo , RNA Interferente Pequeno/genética
18.
Mol Biol Cell ; 16(8): 3865-72, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15944220

RESUMO

Myosin II-dependent contraction of the contractile ring drives equatorial furrowing during cytokinesis in animal cells. Nonetheless, myosin II-null cells of the cellular slime mold Dictyostelium divide efficiently when adhering to substrates by making use of polar traction forces. Here, we show that in the presence of 30 microM blebbistatin, a potent myosin II inhibitor, normal rat kidney (NRK) cells adhering to fibronectin-coated surfaces formed equatorial furrows and divided in a manner strikingly similar to myosin II-null Dictyostelium cells. Such blebbistatin-resistant cytokinesis was absent in partially detached NRK cells and was disrupted in adherent cells if the advance of their polar lamellipodia was disturbed by neighboring cells. Y-27632 (40 microM), which inhibits Rho-kinase, was similar to 30 microM blebbistatin in that it inhibited cytokinesis of partially detached NRK cells but only prolonged furrow ingression in attached cells. In the presence of 100 microM blebbistatin, most NRK cells that initiated anaphase formed tight furrows, although scission never occurred. Adherent HT1080 fibrosarcoma cells also formed equatorial furrows efficiently in the presence of 100 microM blebbistatin. These results provide direct evidence for adhesion-dependent, contractile ring-independent equatorial furrowing in mammalian cells and demonstrate the importance of substrate adhesion for cytokinesis.


Assuntos
Citocinese/fisiologia , Amidas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Citocinese/efeitos dos fármacos , Dictyostelium/citologia , Dictyostelium/efeitos dos fármacos , Fibronectinas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Piridinas/farmacologia , Ratos
19.
Mol Biol Cell ; 16(9): 4256-66, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15987738

RESUMO

Myosin II filament assembly in Dictyostelium discoideum is regulated via phosphorylation of residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail. A series of novel protein kinases in this system are capable of phosphorylating these residues in vitro, driving filament disassembly. Previous studies have demonstrated that at least three of these kinases (MHCK A, MHCK B, and MHCK C) display differential localization patterns in living cells. We have created a collection of single, double, and triple gene knockout cell lines for this family of kinases. Analysis of these lines reveals that three MHC kinases appear to represent the majority of cellular activity capable of driving myosin II filament disassembly, and reveals that cytokinesis defects increase with the number of kinases disrupted. Using biochemical fractionation of cytoskeletons and in vivo measurements via fluorescence recovery after photobleaching (FRAP), we find that myosin II overassembly increases incrementally in the mutants, with the MHCK A(-)/B(-)/C(-) triple mutant showing severe myosin II overassembly. These studies suggest that the full complement of MHC kinases that significantly contribute to growth phase and cytokinesis myosin II disassembly in this organism has now been identified.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Citocinese/fisiologia , Citoesqueleto/enzimologia , Dictyostelium/enzimologia , Miosina Tipo II/fisiologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Linhagem Celular , Dictyostelium/crescimento & desenvolvimento , Genes Reporter , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Sci Rep ; 8(1): 4381, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531328

RESUMO

Flowering plants express multiple actin isoforms. Previous studies suggest that individual actin isoforms have specific functions; however, the subcellular localization of actin isoforms in plant cells remains obscure. Here, we transiently expressed and observed major Arabidopsis vegetative actin isoforms, AtACT2 and AtACT7, as fluorescent-fusion proteins. By optimizing the linker sequence between fluorescent protein and actin, we succeeded in observing filaments that contained these expressed actin isoforms fused with green fluorescent protein (GFP) in Arabidopsis protoplasts. Different colored fluorescent proteins fused with AtACT2 and AtACT7 and co-expressed in Nicotiana benthamiana mesophyll cells co-polymerized in a segregated manner along filaments. In epidermal cells, surprisingly, AtACT2 and AtACT7 tended to polymerize into different types of filaments. AtACT2 was incorporated into thinner filaments, whereas AtACT7 was incorporated into thick bundles. We conclude that different actin isoforms are capable of constructing unique filament arrays, depending on the cell type or tissue. Interestingly, staining patterns induced by two indirect actin filament probes, Lifeact and mTalin1, were different between filaments containing AtACT2 and those containing AtACT7. We suggest that filaments containing different actin isoforms bind specific actin-binding proteins in vivo, since the two probes comprise actin-binding domains from different actin-binding proteins.


Assuntos
Citoesqueleto de Actina/química , Actinas/genética , Proteínas de Arabidopsis/química , Arabidopsis/química , Actinas/química , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas dos Microfilamentos/metabolismo , Polimerização , Ligação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA