Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506228

RESUMO

Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dinaminas , Endocitose , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clatrina/metabolismo , Clatrina/genética , Dinaminas/metabolismo , Dinaminas/genética , Endocitose/genética , Proteínas de Ligação ao GTP , Mutação/genética
2.
J Cell Sci ; 132(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416855

RESUMO

The ability to sense and adapt to the constantly changing environment is important for all organisms. Cell surface receptors and transporters are key for the fast response to extracellular stimuli and, thus, their abundance on the plasma membrane has to be strictly controlled. Heteromeric endosomal sorting complexes required for transport (ESCRTs) are responsible for mediating the post-translational degradation of endocytosed plasma membrane proteins in eukaryotes and are essential both in animals and plants. ESCRTs bind and sort ubiquitylated cargoes for vacuolar degradation. Although many components that comprise the multi-subunit ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III complexes are conserved in eukaryotes, plant and animal ESCRTs have diverged during the course of evolution. Homologues of ESCRT-0, which recognises ubiquitylated cargo, have emerged in metazoan and fungi but are not found in plants. Instead, the Arabidopsis genome encodes plant-specific ubiquitin adaptors and a greater number of target of Myb protein 1 (TOM1) homologues than in mammals. In this Review, we summarise and discuss recent findings on ubiquitin-binding proteins in Arabidopsis that could have equivalent functions to ESCRT-0. We further hypothesise that SH3 domain-containing proteins might serve as membrane curvature-sensing endophilin and amphiphysin homologues during plant endocytosis.


Assuntos
Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Plantas/metabolismo , Vesículas Transportadoras/fisiologia , Animais , Transporte Biológico Ativo , Humanos
3.
Proc Natl Acad Sci U S A ; 114(34): E7197-E7204, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784794

RESUMO

Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Endossomos/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
4.
J Exp Bot ; 70(15): 3881-3894, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31107531

RESUMO

Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Clatrina/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clatrina/genética , Endocitose/genética , Endocitose/fisiologia , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Proc Natl Acad Sci U S A ; 112(40): E5543-51, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26324913

RESUMO

Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/ultraestrutura , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Ligação Proteica , Plântula/genética , Plântula/metabolismo , Plântula/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura
6.
Plant Physiol ; 167(4): 1361-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25699591

RESUMO

The plant vacuole is a central organelle that is involved in various biological processes throughout the plant life cycle. Elucidating the mechanism of vacuole biogenesis and maintenance is thus the basis for our understanding of these processes. Proper formation of the vacuole has been shown to depend on the intracellular membrane trafficking pathway. Although several mutants with altered vacuole morphology have been characterized in the past, the molecular basis for plant vacuole biogenesis has yet to be fully elucidated. With the aim to identify key factors that are essential for vacuole biogenesis, we performed a forward genetics screen in Arabidopsis (Arabidopsis thaliana) and isolated mutants with altered vacuole morphology. The vacuolar fusion defective1 (vfd1) mutant shows seedling lethality and defects in central vacuole formation. VFD1 encodes a Fab1, YOTB, Vac1, and EEA1 (FYVE) domain-containing protein, FYVE1, that has been implicated in intracellular trafficking. FYVE1 localizes on late endosomes and interacts with Src homology-3 domain-containing proteins. Mutants of FYVE1 are defective in ubiquitin-mediated protein degradation, vacuolar transport, and autophagy. Altogether, our results show that FYVE1 is essential for plant growth and development and place FYVE1 as a key regulator of intracellular trafficking and vacuole biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Autofagia , Citoplasma/metabolismo , Endossomos/metabolismo , Genes Reporter , Modelos Biológicos , Mutação , Fenótipo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas Ubiquitinadas/metabolismo , Proteínas de Transporte Vesicular/genética
7.
Proc Natl Acad Sci U S A ; 109(15): 5892-7, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451940

RESUMO

Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Fitocromo B/metabolismo , Acetabularia/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/metabolismo , Sinais de Localização Nuclear , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
8.
Nat Commun ; 15(1): 5188, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898014

RESUMO

Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagossomos , Autofagia , Proteínas de Ligação ao Cálcio , Complexos Endossomais de Distribuição Requeridos para Transporte , Arabidopsis/metabolismo , Arabidopsis/genética , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Fosfatos de Fosfatidilinositol/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Vacúolos/metabolismo , Separação de Fases
9.
Methods Mol Biol ; 2581: 69-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413311

RESUMO

Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here we show methods to analyze DUB activity using immunodetection, Coomassie brilliant blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.


Assuntos
Arabidopsis , Enzimas Desubiquitinantes , Enzimas Desubiquitinantes/metabolismo , Arabidopsis/metabolismo , Ubiquitina/metabolismo
10.
Nat Commun ; 13(1): 6897, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371501

RESUMO

The abundance of plasma membrane-resident receptors and transporters has to be tightly regulated by ubiquitin-mediated endosomal degradation for the proper coordination of environmental stimuli and intracellular signaling. Arabidopsis OVARIAN TUMOR PROTEASE (OTU) 11 and OTU12 are plasma membrane-localized deubiquitylating enzymes (DUBs) that bind to phospholipids through a polybasic motif in the OTU domain. Here we show that the DUB activity of OTU11 and OTU12 towards K63-linked ubiquitin is stimulated by binding to lipid membranes containing anionic lipids. In addition, we show that the DUB activity of OTU11 against K6- and K11-linkages is also stimulated by anionic lipids, and that OTU11 and OTU12 can modulate the endosomal degradation of a model cargo and the auxin efflux transporter PIN2-GFP in vivo. Our results suggest that the catalytic activity of OTU11 and OTU12 is tightly connected to their ability to bind membranes and that OTU11 and OTU12 are involved in the fine-tuning of plasma membrane proteins in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ubiquitina/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Lipídeos
11.
Methods Mol Biol ; 1998: 163-174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250301

RESUMO

Localization studies are important to understand the function of diverse proteins. The endosomal trafficking pathway is very complex, and a lot of proteins function in this pathway, primarily the endosomal sorting complexes required for transport (ESCRTs). Some of the ESCRT-related proteins or mutant variants cannot be stably expressed in planta due to the toxicity of their expression. Therefore, a transient expression system is necessary to study their function. Transient expression in protoplasts from Arabidopsis root cell-derived culture serves as a fast and reliable method for the expression and cell biological and biochemical analyses of otherwise toxic constructs.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Técnicas de Cultura de Células/métodos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Protoplastos/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Western Blotting/métodos , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vetores Genéticos/genética , Mutação , Raízes de Plantas/citologia , Plasmídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
12.
Front Plant Sci ; 9: 1972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687367

RESUMO

Clathrin coated vesicles (CCVs) mediate endocytosis of plasma membrane proteins and deliver their content to the endosomes for either subsequent recycling to the plasma membrane or transport to the vacuole for degradation. CCVs assemble also at the trans-Golgi network (TGN) and is responsible for the transport of proteins to other membranes. Oligomerization of clathrin and recruitment of adaptor protein complexes promote the budding and the release of CCVs. However, many of the details during plant CCV formation are not completely elucidated. The analysis of isolated CCVs is therefore important to better understand the formation of plant CCVs, their cargos and the regulation of clathrin-mediated transport processes. In this article, we describe an optimized method to isolate CCVs from Arabidopsis thaliana seedlings.

13.
Methods Mol Biol ; 1450: 35-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27424744

RESUMO

Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.


Assuntos
Arabidopsis/enzimologia , Enzimas Desubiquitinantes/metabolismo , Biologia Molecular/métodos , Ubiquitina/química , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/isolamento & purificação
14.
Front Plant Sci ; 5: 56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600466

RESUMO

Ubiquitylation is a reversible post-translational modification that is involved in various cellular pathways and that thereby regulates various aspects of plant biology. For a long time, functional studies of ubiquitylation have focused on the function of ubiquitylating enzymes, especially the E3 ligases, rather than deubiquitylating enzymes (DUBs) or ubiquitin isopeptidases, enzymes that hydrolyze ubiquitin chains. One reason may be the smaller number of DUBs in comparison to E3 ligases, implying the broader substrate specificities of DUBs and the difficulties to identify the direct targets. However, recent studies have revealed that DUBs also actively participate in controlling cellular events and thus play pivotal roles in plant development and growth. DUBs are also essential for processing ubiquitin precursors and are important for recycling ubiquitin molecules from target proteins prior to their degradation and thereby maintaining the free ubiquitin pool in the cell. Here, we will discuss the five different DUB families (USP/UBP, UCH, JAMM, OTU, and MJD) and their known biochemical and physiological roles in plants.

15.
Front Plant Sci ; 5: 58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24605116

RESUMO

Programmed cell death (PCD) is a genetically determined process in all multicellular organisms. Plant PCD is effected by a unique group of papain-type cysteine endopeptidases (CysEP) with a C-terminal KDEL endoplasmic reticulum (ER) retention signal (KDEL CysEP). KDEL CysEPs can be stored as pro-enzymes in ER-derived endomembrane compartments and are released as mature CysEPs in the final stages of organelle disintegration. KDEL CysEPs accept a wide variety of amino acids at the active site, including the glycosylated hydroxyprolines of the extensins that form the basic scaffold of the cell wall. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2, and AtCEP3) are expressed. Cell- and tissue-specific activities of these three genes suggest that KDEL CysEPs participate in the abscission of flower organs and in the collapse of tissues in the final stage of PCD as well as in developmental tissue remodeling. We observed that AtCEP1 is expressed in response to biotic stress stimuli in the leaf. atcep1 knockout mutants showed enhanced susceptibility to powdery mildew caused by the biotrophic ascomycete Erysiphe cruciferarum. A translational fusion protein of AtCEP1 with a three-fold hemaglutinin-tag and the green fluorescent protein under control of the endogenous AtCEP1 promoter (PCEP1::pre-pro-3xHA-EGFP-AtCEP1-KDEL) rescued the pathogenesis phenotype demonstrating the function of AtCEP1 in restriction of powdery mildew. The spatiotemporal AtCEP1-reporter expression during fungal infection together with microscopic inspection of the interaction phenotype suggested a function of AtCEP1 in controlling late stages of compatible interaction including late epidermal cell death. Additionally, expression of stress response genes appeared to be deregulated in the interaction of atcep1 mutants and E. cruciferarum. Possible functions of AtCEP1 in restricting parasitic success of the obligate biotrophic powdery mildew fungus are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA