Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tumour Biol ; 34(2): 811-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23242607

RESUMO

The majority of our genes may be regulated in a daily rhythm, including the genes for cell cycle control. Epidemiological and genetic evidences suggest that disruption of circadian timing mechanisms makes our cells more vulnerable to cancer formation. The aim of this study was to investigate the relationship between expression patterns of circadian clock genes (period homolog (per)1, per2, clock, and cry1) and tumor development by analyzing human skin biopsies of malignant melanoma and nonmalignant naevus tumors. We found that mRNA levels and nuclear immunopositivity for the investigated clock genes were reduced by 30-60 % in both melanoma and in naevus biopsies if compared with adjacent nontumorous samples. The alterations in melanoma presented significant associations with clinicopathological characteristics (e.g., Breslow thickness). Contrary to previous reports, the moderate decrease of per1 expression seen in malignant tissues could not be linked to malignant transformation itself; rather, it reflects only the alterations in tissue composition. In turn, clock expression was upregulated in nontumorous cells of melanoma biopsies but not in melanoma cells or naevus cells. As this gene (clock) is closely related to cellular metabolism, our data suggest its role in the impaired regulation of metabolism in malignant tumors. Our results present the first clinical evidence for a possible link between circadian clock genes and human skin tumorigenesis.


Assuntos
Proteínas CLOCK/metabolismo , Criptocromos/metabolismo , Melanoma/metabolismo , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/genética , Neoplasias Cutâneas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas CLOCK/genética , Criptocromos/genética , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Masculino , Melanócitos/metabolismo , Melanoma/genética , Melanoma/patologia , Pessoa de Meia-Idade , Proteínas Circadianas Period/genética , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Adulto Jovem
2.
Chronobiol Int ; 32(4): 447-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25515595

RESUMO

Recently, we have shown that C57BL/6J mice exhibit depression-like behavior under short photoperiod and suggested them as an animal model for investigating seasonal affective disorder (SAD). In this study, we tested if manipulations of the circadian clock with melatonin treatment could effectively modify depression-like and anxiety-like behaviors and brain serotonergic system in C57BL/6J mice. Under short photoperiods (8-h light/16-h dark), daily melatonin treatments 2 h before light offset have significantly altered the 24-h patterns of mRNA expression of circadian clock genes (per1, per2, bmal1 and clock) within the suprachiasmatic nuclei (SCN) mostly by increasing amplitude in their expressional rhythms without inducing robust phase shifts in them. Melatonin treatments altered the expression of genes of serotonergic neurotransmission in the dorsal raphe (tph2, sert, vmat2 and 5ht1a) and serotonin contents in the amygdala. Importantly, melatonin treatment reduced the immobility in forced swim test, a depression-like behavior. As a key mechanism of melatonin-induced antidepressant-like effect, the previously proposed phase-advance hypothesis of the circadian clock could not be confirmed under conditions of our experiment. However, our findings of modest adjustments in both the amplitude and phase of the transcriptional oscillators in the SCN as a result of melatonin treatments may be sufficient to associate with the effects seen in the brain serotonergic system and with the improvement in depression-like behavior. Our study confirmed a predictive validity of C57BL/6J mice as a useful model for the molecular analysis of links between the clock and brain serotonergic system, which could greatly accelerate our understanding of the pathogenesis of SAD, as well as the search for new treatments.


Assuntos
Antidepressivos/farmacologia , Relógios Circadianos/efeitos dos fármacos , Luz , Melatonina/farmacologia , Proteínas Circadianas Period/genética , Transtorno Afetivo Sazonal/genética , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Transtorno Afetivo Sazonal/metabolismo , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA