Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674063

RESUMO

Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.


Assuntos
Regiões 3' não Traduzidas , Fator Neurotrófico Derivado de Linhagem de Célula Glial , MicroRNAs , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Sítios de Ligação , Estudos de Casos e Controles , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , MicroRNAs/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo
2.
Am J Hum Genet ; 105(1): 108-121, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31204009

RESUMO

Pediatric acute liver failure (ALF) is life threatening with genetic, immunologic, and environmental etiologies. Approximately half of all cases remain unexplained. Recurrent ALF (RALF) in infants describes repeated episodes of severe liver injury with recovery of hepatic function between crises. We describe bi-allelic RINT1 alterations as the cause of a multisystem disorder including RALF and skeletal abnormalities. Three unrelated individuals with RALF onset ≤3 years of age have splice alterations at the same position (c.1333+1G>A or G>T) in trans with a missense (p.Ala368Thr or p.Leu370Pro) or in-frame deletion (p.Val618_Lys619del) in RINT1. ALF episodes are concomitant with fever/infection and not all individuals have complete normalization of liver function testing between episodes. Liver biopsies revealed nonspecific liver damage including fibrosis, steatosis, or mild increases in Kupffer cells. Skeletal imaging revealed abnormalities affecting the vertebrae and pelvis. Dermal fibroblasts showed splice-variant mediated skipping of exon 9 leading to an out-of-frame product and nonsense-mediated transcript decay. Fibroblasts also revealed decreased RINT1 protein, abnormal Golgi morphology, and impaired autophagic flux compared to control. RINT1 interacts with NBAS, recently implicated in RALF, and UVRAG, to facilitate Golgi-to-ER retrograde vesicle transport. During nutrient depletion or infection, Golgi-to-ER transport is suppressed and autophagy is promoted through UVRAG regulation by mTOR. Aberrant autophagy has been associated with the development of similar skeletal abnormalities and also with liver disease, suggesting that disruption of these RINT1 functions may explain the liver and skeletal findings. Clarifying the pathomechanism underlying this gene-disease relationship may inform therapeutic opportunities.


Assuntos
Autofagia , Doenças do Desenvolvimento Ósseo/etiologia , Proteínas de Ciclo Celular/genética , Fibroblastos/patologia , Falência Hepática Aguda/etiologia , Mutação , Idade de Início , Alelos , Sequência de Aminoácidos , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lactente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Linhagem , Transporte Proteico , Recidiva , Homologia de Sequência
3.
Am J Hum Genet ; 103(5): 817-825, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401461

RESUMO

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.


Assuntos
Ataxia Cerebelar/genética , Deficiências do Desenvolvimento/genética , Glicosídeo Hidrolases/genética , Mutação/genética , Doenças Neurodegenerativas/genética , ADP-Ribosilação/genética , Adenosina Difosfato Ribose/genética , Adolescente , Alelos , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Masculino , Malformações do Sistema Nervoso/genética , Processamento de Proteína Pós-Traducional/genética
4.
Neuropediatrics ; 52(2): 126-132, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33231275

RESUMO

TPK deficiency due to TPK1 mutations is a rare neurodegenerative disorder, also known as thiamine metabolism dysfunction syndrome 5 (OMIM no.: 614458). Here, we report a new patient with compound heterozygous TPK1 mutations, of which one has not been described so far. The individual reported here suffered from acute onset encephalopathy, ataxia, muscle hypotonia, and regression of developmental milestones in early infancy, repeatedly triggered by febrile infections. Initiation of high-dose thiamine and magnesium supplementation led to a marked and sustained improvement of alertness, ataxia, and muscle tone within days. Contrary to the described natural history of patients with TPK deficiency, the disease course was favorable under thiamine treatment without deterioration or developmental regression during the follow-up period. TPK deficiency is a severe neurodegenerative disease. This case report demonstrates that this condition is potentially treatable. High-dose thiamine treatment should therefore be initiated immediately after diagnosis or even upon suspicion.


Assuntos
Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/fisiopatologia , Tiamina Pirofosfoquinase/deficiência , Tiamina Pirofosfoquinase/genética , Tiamina/farmacologia , Complexo Vitamínico B/farmacologia , Criança , Suplementos Nutricionais , Humanos , Magnésio/administração & dosagem , Doenças Raras , Tiamina/administração & dosagem , Complexo Vitamínico B/administração & dosagem
5.
Brain ; 142(1): 50-58, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576410

RESUMO

Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.


Assuntos
Hidroliases/deficiência , Doenças Neurodegenerativas/genética , Pré-Escolar , Simulação por Computador , Feminino , Febre/complicações , Febre/metabolismo , Fibroblastos/metabolismo , Vetores Genéticos , Humanos , Hidroliases/genética , Lactente , Cinética , Lentivirus , Masculino , Mitocôndrias/metabolismo , Mutação , NAD/análogos & derivados , NAD/metabolismo , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/metabolismo , Cultura Primária de Células , Sequenciamento Completo do Genoma
6.
Am J Hum Genet ; 98(2): 358-62, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26805782

RESUMO

Molecular diagnosis of mitochondrial disorders is challenging because of extreme clinical and genetic heterogeneity. By exome sequencing, we identified three different bi-allelic truncating mutations in TANGO2 in three unrelated individuals with infancy-onset episodic metabolic crises characterized by encephalopathy, hypoglycemia, rhabdomyolysis, arrhythmias, and laboratory findings suggestive of a defect in mitochondrial fatty acid oxidation. Over the course of the disease, all individuals developed global brain atrophy with cognitive impairment and pyramidal signs. TANGO2 (transport and Golgi organization 2) encodes a protein with a putative function in redistribution of Golgi membranes into the endoplasmic reticulum in Drosophila and a mitochondrial localization has been confirmed in mice. Investigation of palmitate-dependent respiration in mutant fibroblasts showed evidence of a functional defect in mitochondrial ß-oxidation. Our results establish TANGO2 deficiency as a clinically recognizable cause of pediatric disease with multi-organ involvement.


Assuntos
Alelos , Arritmias Cardíacas/genética , Cardiomiopatias/genética , Mutação , Arritmias Cardíacas/diagnóstico , Cardiomiopatias/diagnóstico , Pré-Escolar , Exoma , Feminino , Humanos , Lactente , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Linhagem
7.
Mol Psychiatry ; 23(12): 2347-2362, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29321673

RESUMO

Pedigree-based analyses of intelligence have reported that genetic differences account for 50-80% of the phenotypic variation. For personality traits these effects are smaller, with 34-48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around 30% for intelligence and between 0 and 15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele frequency, copy number variants, and structural variants. Using ~20,000 individuals in the Generation Scotland family cohort genotyped for ~700,000 single-nucleotide polymorphisms (SNPs), we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not tagged in GWAS of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that ~50% of differences in intelligence, and ~40% of the differences in education, can be explained by genetic effects when a larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic variants to individual differences in intelligence, and education is consistent with mutation-selection balance.


Assuntos
Inteligência/genética , Personalidade/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Coortes , Família , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Escócia
8.
Proc Natl Acad Sci U S A ; 113(47): 13366-13371, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27799538

RESUMO

Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∼17,000; UK Biobank, n = ∼115,000; and the Estonian Biobank, n = ∼6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members' polygenic profile score for education to predict their parents' longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∼2.7% lower mortality risk for both mothers (total ndeaths = 79,702) and ∼2.4% lower risk for fathers (total ndeaths = 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity.


Assuntos
Escolaridade , Estudos de Associação Genética/métodos , Variação Genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Bases de Dados Genéticas , Estônia , Feminino , Humanos , Longevidade , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Pais , Escócia , Reino Unido
9.
Ann Neurol ; 82(6): 1004-1015, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29205472

RESUMO

OBJECTIVE: 3-Methylglutaconic aciduria, dystonia-deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. METHODS: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. RESULTS: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days-33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic "putaminal eye" was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. INTERPRETATION: MEGDHEL syndrome is a progressive deafness-dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004-1015.


Assuntos
Hidrolases de Éster Carboxílico/genética , Surdocegueira/diagnóstico por imagem , Surdocegueira/genética , Progressão da Doença , Distonia/diagnóstico por imagem , Distonia/genética , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Mutação/genética , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Surdocegueira/terapia , Distonia/terapia , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/terapia , Masculino , Atrofia Óptica/terapia , Adulto Jovem
10.
Brain ; 140(2): 279-286, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007989

RESUMO

Unexplained global developmental delay and epilepsy in childhood pose a major socioeconomic burden. Progress in defining the molecular bases does not often translate into effective treatment. Notable exceptions include certain inborn errors of metabolism amenable to dietary intervention. CAD encodes a multifunctional enzyme involved in de novo pyrimidine biosynthesis. Alternatively, pyrimidines can be recycled from uridine. Exome sequencing in three families identified biallelic CAD mutations in four children with global developmental delay, epileptic encephalopathy, and anaemia with anisopoikilocytosis. Two died aged 4 and 5 years after a neurodegenerative disease course. Supplementation of the two surviving children with oral uridine led to immediate cessation of seizures in both. A 4-year-old female, previously in a minimally conscious state, began to communicate and walk with assistance after 9 weeks of treatment. A 3-year-old female likewise showed developmental progress. Blood smears normalized and anaemia resolved. We establish CAD as a gene confidently implicated in this neurometabolic disorder, characterized by co-occurrence of global developmental delay, dyserythropoietic anaemia and seizures. While the natural disease course can be lethal in early childhood, our findings support the efficacy of uridine supplementation, rendering CAD deficiency a treatable neurometabolic disorder and therefore a potential condition for future (genetic) newborn screening.


Assuntos
Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Mutação/genética , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Uridina/uso terapêutico , Anemia/complicações , Anemia/tratamento farmacológico , Anemia/genética , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Análise Mutacional de DNA , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Espasmos Infantis/complicações , Espasmos Infantis/diagnóstico por imagem
11.
Neuropediatrics ; 49(6): 401-404, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199896

RESUMO

Many genetic and nongenetic causes for developmental delay in childhood could be identified. Often, however, the molecular basis cannot be elucidated. As next-generation sequencing is becoming more frequently available in a diagnostic context, an increasing number of genetic variations are found as causative in children with developmental delay.We performed trio exome sequencing in a girl with developmental delay and minor dysmorphological features. Using a filter for de novo variants, the heterozygous missense variant c.812A>T, p.(Glu217Val) was found in the candidate gene POU3F2 in our patient. POU3F2 plays an important role in neuronal differentiation and hormonal regulation. To date, it has not been associated with monogenic disorders. Studies on Pou3f2 knockout mice highlighted the importance of this protein in the development of the brain. Furthermore, microdeletions with an overlapping region including only POU3F2 and FBXL4 were linked to developmental delay in six unrelated families. Therefore, POU3F2 is a strong candidate gene for developmental delay, although functional assays proving this assumption still have to be done.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Fatores do Domínio POU/genética , Braquidactilia/patologia , Pré-Escolar , Orelha/anormalidades , Face/anormalidades , Feminino , Dedos/anormalidades , Humanos , Mutação de Sentido Incorreto , Sequenciamento do Exoma
12.
Neuropediatrics ; 49(1): 59-62, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915517

RESUMO

Recently, heterozygous de novo mutations in SCL1A2 have been reported to underlie severe early-onset epileptic encephalopathy. In one male presenting with epileptic seizures and visual impairment, we identified a novel homozygous splicing variant in SCL1A2 (c.1421 + 1G > C) by using exome sequencing. Functional studies on cDNA level confirmed a consecutive loss of function. Our findings suggest that not only de novo mutations but also biallelic variants in SLC1A2 can cause epilepsy and that there is an additional autosomal recessive mode of inheritance. These findings also contribute to the understanding of the genetic mechanism of autosomal dominant SLC1A2-related epileptic encephalopathy as they exclude haploinsufficiency as exclusive genetic mechanism.


Assuntos
Epilepsia/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Mutação/genética , Pré-Escolar , Transportador 2 de Aminoácido Excitatório , Saúde da Família , Humanos , Masculino , Fenótipo
13.
Neuropediatrics ; 49(6): 373-378, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114719

RESUMO

Neonatal-onset movement disorders, especially in combination with seizures, are rare and often related to mitochondrial disorders. 3-methylglutaconic aciduria (3-MGA-uria) is a marker for mitochondrial dysfunction. In particular, consistently elevated urinary excretion of 3-methylglutaconic acid is the hallmark of a small but growing group of inborn errors of metabolism (IEM) due to defective phospholipid remodeling or mitochondrial membrane-associated disorders (mutations in TAZ, SERAC1, OPA3, CLPB, DNAJC19, TMEM70, TIMM50). Exome/genome sequencing is a powerful tool for the diagnosis of the clinically and genetically heterogeneous mitochondrial disorders. Here, we report 11 individuals, of whom 2 are previously unpublished, with biallelic variants in high temperature requirement protein A2 (HTRA2) encoding a mitochondria-localized serine protease. All individuals presented a recognizable phenotype with neonatal- or infantile-onset neurodegeneration and death within the first month of life. Hallmark features were central hypopnea/apnea leading to respiratory insufficiency, seizures, neutropenia, 3-MGA-uria, tonus dysregulation, and dysphagia. Tremor, jitteriness, dystonia, and/or clonus were also common. HTRA2 defect should be grouped under the IEM with 3-MGA-uria as discriminating feature. Clinical characteristics overlap with other disorders of this group suggesting a common underlying pathomechanism. Urinary organic acid analysis is a noninvasive and inexpensive test that can guide further genetic testing in children with suggestive clinical findings.


Assuntos
Deficiências do Desenvolvimento , Epilepsia , Serina Peptidase 2 de Requerimento de Alta Temperatura A/deficiência , Erros Inatos do Metabolismo , Doenças Mitocondriais , Transtornos dos Movimentos , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Distonia/diagnóstico , Distonia/etiologia , Distonia/genética , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia/genética , Evolução Fatal , Feminino , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido , Masculino , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/genética , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/genética , Tremor/diagnóstico , Tremor/etiologia , Tremor/genética
14.
Neuropediatrics ; 49(5): 330-338, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940663

RESUMO

BACKGROUND: Primary microcephaly and profound global developmental delay have been considered the core clinical phenotype in patients with bi-allelic PRUNE1 mutations. METHODS: Linkage analysis and whole-exome sequencing (WES) in a multiplex family and extraction of further cases from a WES repository containing 571 children with severe developmental disabilities and neurologic symptoms. RESULTS: We identified bi-allelic PRUNE1 mutations in twelve children from six unrelated families. All patients who survived beyond the first 6 months of life had early-onset global developmental delay, bilateral spastic paresis, dysphagia and difficult-to-treat seizures, while congenital or later-evolving microcephaly was not a consistent finding. Brain MRI showed variable anomalies with progressive cerebral and cerebellar atrophies and T2-hyperintense brain stem lesions. Peripheral neuropathy was documented in five cases. Disease course was progressive in all patients and eight children died in the first or early second decade of life. In addition to the previously reported missense mutation p.(Asp106Asn), we observed a novel homozygous missense variant p.(Leu172Pro) and a homozygous contiguous gene deletion encompassing most of the PRUNE1 gene and part of the neighboring BNIPL gene. CONCLUSIONS: PRUNE1 deficiency causes severe early-onset disease affecting the central and peripheral nervous systems. Microcephaly is probably not a universal feature.


Assuntos
Encéfalo/patologia , Deficiências do Desenvolvimento , Progressão da Doença , Epilepsia Resistente a Medicamentos , Erros Inatos do Metabolismo , Microcefalia , Espasticidade Muscular , Paresia , Monoéster Fosfórico Hidrolases , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/genética , Feminino , Ligação Genética , Humanos , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/fisiopatologia , Microcefalia/etiologia , Microcefalia/genética , Espasticidade Muscular/etiologia , Espasticidade Muscular/genética , Mutação de Sentido Incorreto , Paresia/etiologia , Paresia/genética , Linhagem , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Sequenciamento do Exoma
15.
Hum Mol Genet ; 24(14): 4167-82, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25918167

RESUMO

We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge.


Assuntos
Genômica/métodos , Modelos Genéticos , Fenótipo , Índice de Massa Corporal , Estudos de Coortes , Croácia , Bases de Dados Genéticas , Pesquisa Empírica , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lipoproteínas HDL/sangue , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tamanho da Amostra , Escócia
16.
Plant Cell ; 25(5): 1840-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23723325

RESUMO

Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate.


Assuntos
Antocianinas/metabolismo , Frutas/metabolismo , Glucosídeos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Sequência de Aminoácidos , Antocianinas/química , Transporte Biológico , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucosídeos/química , Glutationa/metabolismo , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/classificação , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Vacúolos/metabolismo , Vitis/genética , Vitis/crescimento & desenvolvimento
17.
Plant Physiol ; 164(2): 777-89, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24381066

RESUMO

Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-ß-glucuronidase/-GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [14C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH4Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Frutose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Vacúolos/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Temperatura Baixa , Frutose/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vacúolos/efeitos dos fármacos
18.
J Neurosci ; 33(16): 7020-6, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595759

RESUMO

BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid ß peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the ß2-subunit of voltage-gated sodium channels (Navß2). Although increased BACE1 levels are associated with Navß2 cleavage in AD patients, whether Navß2 cleavage occurs in APP mice had not yet been examined. Such a finding would be of interest because of its potential impact on neuronal activity: previous studies demonstrated that BACE1-overexpressing mice exhibit excessive cleavage of Navß2 and reduced sodium current density, but the phenotype associated with loss of function mutations in either Navß-subunits or pore-forming α-subunits is epilepsy. Because mounting evidence suggests that epileptiform activity may play an important role in the development of AD-related cognitive deficits, we examined whether enhanced cleavage of Navß2 occurs in APP transgenic mice, and whether it is associated with aberrant neuronal activity and cognitive deficits. We found increased levels of BACE1 expression and Navß2 cleavage fragments in cortical lysates from APP transgenic mice, as well as associated alterations in Nav1.1α expression and localization. Both pyramidal neurons and inhibitory interneurons exhibited evidence of increased Navß2 cleavage. Moreover, the magnitude of alterations in sodium channel subunits was associated with aberrant EEG activity and impairments in the Morris water maze. Together, these results suggest that altered processing of voltage-gated sodium channels may contribute to aberrant neuronal activity and cognitive deficits in AD.


Assuntos
Doença de Alzheimer/complicações , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Neurônios/metabolismo , Canais de Sódio/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Biotinilação , Modelos Animais de Doenças , Eletroencefalografia , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo
19.
Plant Physiol ; 163(3): 1446-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24028845

RESUMO

Abscisic acid (ABA) is a key plant hormone involved in diverse physiological and developmental processes, including abiotic stress responses and the regulation of stomatal aperture and seed germination. Abscisic acid glucosyl ester (ABA-GE) is a hydrolyzable ABA conjugate that accumulates in the vacuole and presumably also in the endoplasmic reticulum. Deconjugation of ABA-GE by the endoplasmic reticulum and vacuolar ß-glucosidases allows the rapid formation of free ABA in response to abiotic stress conditions such as dehydration and salt stress. ABA-GE further contributes to the maintenance of ABA homeostasis, as it is the major ABA catabolite exported from the cytosol. In this work, we identified that the import of ABA-GE into vacuoles isolated from Arabidopsis (Arabidopsis thaliana) mesophyll cells is mediated by two distinct membrane transport mechanisms: proton gradient-driven and ATP-binding cassette (ABC) transporters. Both systems have similar Km values of approximately 1 mm. According to our estimations, this low affinity appears nevertheless to be sufficient for the continuous vacuolar sequestration of ABA-GE produced in the cytosol. We further demonstrate that two tested multispecific vacuolar ABCC-type ABC transporters from Arabidopsis exhibit ABA-GE transport activity when expressed in yeast (Saccharomyces cerevisiae), which also supports the involvement of ABC transporters in ABA-GE uptake. Our findings suggest that the vacuolar ABA-GE uptake is not mediated by specific, but rather by several, possibly multispecific, transporters that are involved in the general vacuolar sequestration of conjugated metabolites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Abscísico/metabolismo , Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Prótons , Vacúolos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/química , Ácido Abscísico/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosídeos/química , Glucosídeos/metabolismo , Transporte de Íons , Células do Mesofilo/metabolismo , Mutação , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Plant Cell ; 23(2): 600-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21307286

RESUMO

Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.


Assuntos
Ciclo do Ácido Cítrico , Fotossíntese , Proteínas de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Succinato Desidrogenase/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Clonagem Molecular , Proteínas Ferro-Enxofre/metabolismo , Solanum lycopersicum/genética , Mitocôndrias/metabolismo , Consumo de Oxigênio , Filogenia , Proteínas de Plantas/genética , Transpiração Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Antissenso/genética , RNA de Plantas/genética , Succinato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA