Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916779

RESUMO

In this study, we investigated the photoluminous spectroscopic behavior of hybrid powder incorporating both anionic fluorescein dye (AFD) and 1-butanesulfonate (C4S) with layered double hydroxide (LDH) in the presence of NH3 or NO2 gas under various relative humidity conditions. In the presence of NH3 gas, drastic photoluminescence enhancement from the LDH/AFD/C4S hybrid was observed at relative humidity (RH) ≥ 40% when the NH3 reached a certain concentration. Meanwhile, the LDH/AFD/C4S hybrid was exposed to NO2 gas at various relative humidity conditions, and the following behavior was observed: At RH ≥ 60%, the photoluminescence (PL) intensity from the hybrid gradually decreased as NO2 concentration increased. Therefore, the LDH/AFD/C4S hybrid investigated in this study is inferred to be suitable for optical NH3/NO2 sensor devices, which can be used in humid air.

2.
ACS Omega ; 3(1): 898-905, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457936

RESUMO

We report a simple room-temperature synthesis route for increasing the reactivity of a TiO2 photocatalyst using a solution plasma process (SPP). Hydrogen radicals generated from the SPP chamber interact with the TiO2 photocatalyst feedstock, transforming its crystalline phase and introducing oxygen vacancy defects. In this work, we examined a pure anatase TiO2 as a model feedstock because of its photocatalytic attributes and well-characterized properties. After the SPP treatment, the pure anatase crystalline phase was transformed to an anatase/brookite heterocrystalline phase with oxygen vacancies. Furthermore, the SPP treatment promoted the absorption of both UV and visible light by TiO2. As a result, TiO2 treated by the SPP for 3 h showed a high gaseous photocatalytic performance (91.1%) for acetaldehyde degradation to CO2 compared with the activity of untreated TiO2 (51%). The SPP-treated TiO2 was also more active than nitrogen-doped TiO2 driven by visible light (66%). The overall photocatalytic performance was related to the SPP treatment time. The SPP technique could be used to enhance the activity of readily available feedstocks with a short processing time. These results demonstrate the potential of this method for modifying narrow-band gap metal oxides, metal sulfides, and polymer composite-based catalyst materials. The modifications of these materials are not limited to photocatalysts and could be used in a wide range of energy and environment-based applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA