Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 8(2): 193-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996615

RESUMO

Owing to the immunogenicity of adeno-associated viruses (AAVs), gene therapies using AAVs face considerable obstacles. Here, by leveraging ex vivo T-cell assays, the prediction of epitope binding to major histocompatibility complex class-II alleles, sequence-conservation analysis in AAV phylogeny and site-directed mutagenesis, we show that the replacement of amino acid residues in a promiscuous and most immunodominant T-cell epitope in the AAV9 capsid with AAV5 sequences abrogates the immune responses of peripheral blood mononuclear cells to the chimaeric vector while preserving its functions, potency, cellular specificity, transduction efficacy and biodistribution. This rational approach to the immunosilencing of capsid epitopes promiscuously binding to T cells may be applied to other AAV vectors and epitope regions.


Assuntos
Capsídeo , Dependovirus , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/genética , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/análise , Epitopos de Linfócito T/metabolismo , Leucócitos Mononucleares , Distribuição Tecidual , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo
2.
ACS Chem Biol ; 17(10): 2789-2800, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36190452

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a cancer predisposition syndrome driven by mutation of the tumor suppressor fumarate hydratase (FH). Inactivation of FH causes accumulation of the electrophilic oncometabolite fumarate. In the absence of methods for reactivation, tumor suppressors can be targeted via identification of synthetic lethal interactions using genetic screens. Inspired by recent advances in chemoproteomic target identification, here, we test the hypothesis that the electrophilicity of the HLRCC metabolome may produce unique susceptibilities to covalent small molecules, a phenomenon we term conditional covalent lethality. Screening a panel of chemically diverse electrophiles, we identified a covalent ligand, MP-1, that exhibits FH-dependent cytotoxicity. Synthesis and structure-activity profiling identified key molecular determinants underlying the molecule's effects. Chemoproteomic profiling of cysteine reactivity together with clickable probes validated the ability of MP-1 to engage an array of functional cysteines, including one lying in the Zn-finger domain of the tRNA methyltransferase enzyme TRMT1. TRMT1 overexpression rescues tRNA methylation from inhibition by MP-1 and partially attenuates the covalent ligand's cytotoxicity. Our studies highlight the potential for covalent metabolites and small molecules to synergistically produce novel synthetic lethal interactions and raise the possibility of applying phenotypic screening with chemoproteomic target identification to identify new functional oncometabolite targets.


Assuntos
Fumarato Hidratase , Síndromes Neoplásicas Hereditárias , Humanos , Cisteína , Ligantes , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/metabolismo , Fumaratos , tRNA Metiltransferases , RNA de Transferência
3.
ACS Chem Biol ; 15(4): 856-861, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32250583

RESUMO

Metabolites regulate protein function via covalent and noncovalent interactions. However, manipulating these interactions in living cells remains a major challenge. Here, we report a chemical strategy for inducing cysteine S-succination, a nonenzymatic post-translational modification derived from the oncometabolite fumarate. Using a combination of antibody-based detection and kinetic assays, we benchmark the in vitro and cellular reactivity of two novel S-succination "agonists," maleate and 2-bromosuccinate. Cellular assays reveal maleate to be a more potent and less toxic inducer of S-succination, which can activate KEAP1-NRF2 signaling in living cells. By enabling the cellular reconstitution of an oncometabolite-protein interaction with physiochemical accuracy and minimal toxicity, this study provides a methodological basis for better understanding the signaling role of metabolites in disease.


Assuntos
Cisteína/química , Fumaratos/farmacologia , Maleatos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/metabolismo , Succinatos/farmacologia , Acilação , Linhagem Celular Tumoral , Fumaratos/química , Fumaratos/toxicidade , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Maleatos/química , Maleatos/toxicidade , Fenóis/química , Proteoma/química , Proteômica/métodos , Succinatos/química , Succinatos/toxicidade , Compostos de Sulfidrila/química
4.
Methods Enzymol ; 622: 431-448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155064

RESUMO

Dysregulated cellular metabolism is an emerging hallmark of cancer. Improved methods to profile aberrant metabolic activity thus have substantial applications as tools for diagnosis and understanding the biology of malignant tumors. Here we describe the utilization of a bioorthogonal ligation to fluorescently detect the TCA cycle oncometabolite fumarate. This method enables the facile measurement of fumarate hydratase activity in cell and tissue samples, and can be used to detect disruptions in metabolism that underlie the genetic cancer syndrome hereditary leiomyomatosis and renal cell cancer (HLRCC). The current method has substantial utility for sensitive fumarate hydratase activity profiling, and also provides a foundation for future applications in diagnostic detection and imaging of cancer metabolism.


Assuntos
Ciclo do Ácido Cítrico , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Leiomiomatose/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/metabolismo , Química Click/métodos , Reação de Cicloadição , Ensaios Enzimáticos/métodos , Feminino , Corantes Fluorescentes/análise , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Fluorometria/métodos , Fumaratos/análise , Humanos
5.
PLoS One ; 8(12): e81958, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312614

RESUMO

Climate has been inherently linked to global diversity patterns, and yet no empirical data are available to put modern climate change into a millennial-scale context. High tropical species diversity has been linked to slow rates of climate change during the Quaternary, an assumption that lacks an empirical foundation. Thus, there is the need for quantifying the velocity at which the bioclimatic space changed during the Quaternary in the tropics. Here we present rates of climate change for the late Pleistocene and Holocene from Mexico and Guatemala. An extensive modern pollen survey and fossil pollen data from two long sedimentary records (30,000 and 86,000 years for highlands and lowlands, respectively) were used to estimate past temperatures. Derived temperature profiles show a parallel long-term trend and a similar cooling during the Last Glacial Maximum in the Guatemalan lowlands and the Mexican highlands. Temperature estimates and digital elevation models were used to calculate the velocity of isotherm displacement (temperature change velocity) for the time period contained in each record. Our analyses showed that temperature change velocities in Mesoamerica during the late Quaternary were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. Our data demonstrate that, given extremely high temperature change velocities, species survival must have relied on either microrefugial populations or persistence of suppressed individuals. Contrary to the usual expectation of stable climates being associated with high diversity, our results suggest that Quaternary tropical diversity was probably maintained by centennial-scale oscillatory climatic variability that forestalled competitive exclusion. As humans have simplified modern landscapes, thereby removing potential microrefugia, and climate change is occurring monotonically at a very high velocity, extinction risk for tropical species is higher than at any time in the last 86,000 years.


Assuntos
Mudança Climática/história , Fenômenos Ecológicos e Ambientais , Temperatura , Clima Tropical , Biodiversidade , América Central , Mudança Climática/estatística & dados numéricos , História Antiga , México , Pólen/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA