Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003720

RESUMO

Sedanolide is a bioactive compound with anti-inflammatory and antitumor activities. Although it has been recently suggested that sedanolide activates the nuclear factor E2-related factor 2 (NRF2) pathway, there is little research on its effects on cellular resistance to oxidative stress. The objective of the present study was to investigate the function of sedanolide in suppressing hydrogen peroxide (H2O2)-induced oxidative damage and the underlying molecular mechanisms in human hepatoblastoma cell line HepG2 cells. We found that sedanolide activated the antioxidant response element (ARE)-dependent transcription mediated by the nuclear translocation of NRF2. Pathway enrichment analysis of RNA sequencing data revealed that sedanolide upregulated the transcription of antioxidant enzymes involved in the NRF2 pathway and glutathione metabolism. Then, we further investigated whether sedanolide exerts cytoprotective effects against H2O2-induced cell death. We showed that sedanolide significantly attenuated cytosolic and mitochondrial reactive oxygen species (ROS) generation induced by exposure to H2O2. Furthermore, we demonstrated that pretreatment with sedanolide conferred a significant cytoprotective effect against H2O2-induced cell death probably due to preventing the decrease in the mitochondrial membrane potential and the increase in caspase-3/7 activity. Our study demonstrated that sedanolide enhanced cellular resistance to oxidative damage via the activation of the Kelch-like ECH-associated protein 1 (KEAP1)-NRF2 pathway.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais , Estresse Oxidativo , Apoptose , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799598

RESUMO

We sought to develop a cell-based cytotoxicity assay using human hepatocytes, which reflect the effects of drug-metabolizing enzymes on cytotoxicity. In this study, we generated luminescent human hepatoblastoma HepG2 cells using the mouse artificial chromosome vector, in which click beetle luciferase alone or luciferase and major drug-metabolizing enzymes (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) are expressed, and monitored the time-dependent changes of CYP-mediated cytotoxicity expression by bioluminescence measurement. Real-time bioluminescence measurement revealed that compared with CYP-non-expressing cells, the luminescence intensity of CYP-expressing cells rapidly decreased when the cells were treated with low concentrations of aflatoxin B1 or primaquine, which exhibits cytotoxicity in the presence of CYP3A4 or CYP2D6, respectively. Using kinetics data obtained by the real-time bioluminescence measurement, we estimated the time-dependent changes of 50% inhibitory concentration (IC50) values in the aflatoxin B1- and primaquine-treated cell lines. The first IC50 value was detected much earlier and at a lower concentration in primaquine-treated CYP-expressing HepG2 cells than in primaquine-treated CYP-non-expressing cells, and the decrease of IC50 values was much faster in the former than the latter. Thus, we successfully monitored time- and concentration-dependent dynamic changes of CYP-mediated cytotoxicity expression in CYP-expressing luminescent HepG2 cells by means of real-time bioluminescence measurement.


Assuntos
Aflatoxina B1/toxicidade , Efeito Fundador , Medições Luminescentes/métodos , Primaquina/toxicidade , Imagem com Lapso de Tempo/métodos , Xenobióticos/toxicidade , Animais , Linhagem Celular Tumoral , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células Hep G2 , Humanos , Concentração Inibidora 50 , Luciferases/genética , Luciferases/metabolismo , Luminescência , Camundongos
3.
Proc Natl Acad Sci U S A ; 114(18): E3699-E3708, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416676

RESUMO

The temporal order of physiology and behavior in mammals is primarily regulated by the circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Taking advantage of bioluminescence reporters, we monitored the circadian rhythms of the expression of clock genes Per1 and Bmal1 in the SCN of freely moving mice and found that the rate of phase shifts induced by a single light pulse was different in the two rhythms. The Per1-luc rhythm was phase-delayed instantaneously by the light presented at the subjective evening in parallel with the activity onset of behavioral rhythm, whereas the Bmal1-ELuc rhythm was phase-delayed gradually, similar to the activity offset. The dissociation was confirmed in cultured SCN slices of mice carrying both Per1-luc and Bmal1-ELuc reporters. The two rhythms in a single SCN slice showed significantly different periods in a long-term (3 wk) culture and were internally desynchronized. Regional specificity in the SCN was not detected for the period of Per1-luc and Bmal1-ELuc rhythms. Furthermore, neither is synchronized with circadian intracellular Ca2+ rhythms monitored by a calcium indicator, GCaMP6s, or with firing rhythms monitored on a multielectrode array dish, although the coupling between the circadian firing and Ca2+ rhythms persisted during culture. These findings indicate that the expressions of two key clock genes, Per1 and Bmal1, in the SCN are regulated in such a way that they may adopt different phases and free-running periods relative to each other and are respectively associated with the expression of activity onset and offset.


Assuntos
Fatores de Transcrição ARNTL/biossíntese , Comportamento Animal , Sinalização do Cálcio , Ritmo Circadiano , Proteínas Circadianas Period/biossíntese , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Cálcio/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/genética
4.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540402

RESUMO

Our previous study suggested that the interleukin (IL)-6 and IL-10 could serve as good biomarkers for chronic inflammatory disease. We previously established an IL-6 and IL-10 reporters assay that could examine reporter activity along with the reference gene in LPS-induced RAW 264.7 cells. In this study, we described new and stable RAW 264.7 derived dual-color IL-6/gapdh and IL-10/gapdh reporters. This assay allowed us to easily determine relative IL-6 and IL-10 levels with 96-well plate within one step. We evaluated the relative IL-6 and IL-10 levels in the LPS-induced stable cells testing 52 natural products by real-time bioluminescence monitoring and time-point determination using a microplate luminometer. The relative IL-6 and IL-6/IL-10 values decreased by the crude ethanol extracts from nutmeg and by 1'S-1'-acetoxychavicol from greater galangal using real-time bioluminescence monitoring. At the same time, the relative IL-10 was induced. The relative IL-6 and IL-6/IL-10 decreased by crude ethanol extracts from nutmeg and 1'S-1'-acetoxychavicol acetate at 6 h. Only crude ethanol extract from nutmeg induced IL-10 at 6 h. We suggested that the use of these stable cells by real-time monitoring could serve as a screening assay for anti-inflammatory activity and may be used to discover new drugs against chronic inflammatory disease.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-10/análise , Interleucina-6/análise , Macrófagos/efeitos dos fármacos , Animais , Produtos Biológicos/farmacologia , Biomarcadores Farmacológicos/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-10/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , Medições Luminescentes/métodos , Macrófagos/imunologia , Camundongos , Células RAW 264.7
5.
Biochem Biophys Res Commun ; 505(3): 885-890, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30301531

RESUMO

In previous study, we suggested that the interleukin (IL)-6 and IL-10 could serve as a good biomarker for anti-inflammation that related to chronic inflammatory disease. Recently, we are finding new anti-inflammation compounds from natural products by screening of IL-6 and IL-10 levels. Although, we could measure IL-6 and IL-10 levels by several methods. However, all methods could not measure continuous kinetic of IL-6 and IL-10 levels. Most methods have multiple steps and take a long time. Therefore, there is no a suitable method for screening. To this end, we established IL-6 and IL-10 promoter assay which can monitor with reference gene as Glyceraldehyde 3-phosphate dehydrogenase (gapdh) promoter in living single cell. It could determine IL-6 and IL-10 levels continuously in real-time within two steps. We evaluated IL-6 and IL-10 reporter expression in LPS-induced RAW 264.7 cells with well-known anti-inflammatory compounds such as quercetin, xanthones, ß-D-glucan and dexamethasone. As the results, the expression of IL-6 and IL-10 reporters were strongly induced by LPS. The expression of IL-6 reporter was inhibited by all anti-inflammation compounds in LPS-induced RAW 264.7 cells. The expression of IL-10 reporter was inhibited by quercetin, xanthones and dexamethasone in LPS-induced RAW 264.7 cells. While, expression of IL-10 reporter was induced by ß-D-glucan. These results indicated that this assay could use for determination of IL-6 and IL-10 reporter expression in LPS-induced RAW 264.7 cells for anti-inflammation activity. Moreover, the results showed that natural compounds have an effect on the time course of IL-6 and IL-10 expressions. Therefore, real-time monitoring has a merit for natural compounds screening. We suggested that this assay could serve as a compound screening assay for anti-inflammation activity.


Assuntos
Monitoramento de Medicamentos/métodos , Mediadores da Inflamação/análise , Interleucina-10/análise , Interleucina-6/análise , Animais , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Interleucina-10/agonistas , Interleucina-10/antagonistas & inibidores , Interleucina-6/agonistas , Interleucina-6/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Quercetina/farmacologia , Células RAW 264.7 , Xantonas/farmacologia , beta-Glucanas/farmacologia
6.
Luminescence ; 33(3): 616-624, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29424036

RESUMO

We have developed a bioluminescence-based non-destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)-targeted copepod luciferase (GLuc-KDEL), respectively, by using multi-integrase mouse artificial chromosome (MI-MAC) vector. We have demonstrated that the time-dependent concentration response curves of ELuc luminescence intensity and WST-1 assay, and GLuc-KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant-treated ELuc- and GLuc-KDEL-expressing HepG2 stable cell lines. We have clarified that the increase of GLuc-KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc-KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc-KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc-KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules.


Assuntos
Medições Luminescentes/métodos , Testes de Toxicidade/métodos , Animais , Morte Celular , Sobrevivência Celular/efeitos dos fármacos , Besouros/genética , Colorimetria/métodos , Copépodes/genética , Meios de Cultivo Condicionados/química , Proteína HMGB1/metabolismo , Células Hep G2 , Humanos , L-Lactato Desidrogenase/metabolismo , Luciferases/genética , Proteínas Recombinantes/genética
7.
Biochem Biophys Res Commun ; 490(2): 499-505, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28624457

RESUMO

Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO3)-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO3 particles.


Assuntos
Carbonato de Cálcio/efeitos adversos , Carbonato de Cálcio/imunologia , Inflamação/etiologia , Inflamação/imunologia , Macrófagos/imunologia , Fagocitose , Animais , Cálcio/análise , Cálcio/imunologia , Carbonato de Cálcio/administração & dosagem , Carbonato de Cálcio/análise , Linhagem Celular , Citocinas/análise , Citocinas/imunologia , Humanos , Macrófagos/citologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fosfatos/análise , Fosfatos/imunologia , Titânio/análise , Titânio/imunologia
8.
BMC Biotechnol ; 17(1): 54, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28637431

RESUMO

BACKGROUND: Three-dimensional (3D) spheroids are frequently used in toxicological study because their morphology and function closely resemble those of tissue. As these properties are maintained over a long term, repeated treatment of the spheroids with a test object is possible. Generally, in the repeated treatment test to assess cytotoxicity in the spheroids, ATP assay, colorimetric measurement using pigments or high-content imaging analysis is performed. However, continuous assessment of cytotoxicity in the same spheroids using the above assays or analysis is impossible because the spheroids must be disrupted or killed. To overcome this technical limitation, we constructed a simple monitoring system in which cytotoxicity in the spheroids can be continuously monitored by nondestructive bioluminescence measurement. RESULTS: Mouse primary hepatocytes were isolated from transchromosomic (Tc) mice harboring a mouse artificial chromosome (MAC) vector expressing beetle luciferase Emerald Luc (ELuc) under the control of cytomegalovirus immediate early enhancer/chicken ß-actin promoter/rabbit ß-globin intron II (CAG) promoter, and used in 3D cultures. We confirmed that both luminescence and albumin secretion from the spheroids seeded in the 96-well format Cell-ableTM were maintained for approximately 1 month. Finally, we repetitively treated the luminescent 3D spheroids with representative hepatotoxicants for approximately 1 month, and continuously and nondestructively measured bioluminescence every day. We successfully obtained daily changes of the dose-response bioluminescence curves for the respective toxicants. CONCLUSIONS: In this study, we constructed a monitoring system in which cytotoxicity in the same 3D spheroids was continuously and sensitively monitored over a long term. Because this system can be easily applied to other cells, such as human primary cells or stem cells, it is expected to serve as the preferred platform for simple and cost-effective long-term monitoring of cellular events, including cytotoxicity.


Assuntos
Testes de Carcinogenicidade/métodos , Besouros/enzimologia , Hepatócitos/efeitos dos fármacos , Luciferases/metabolismo , Medições Luminescentes/métodos , Esferoides Celulares/efeitos dos fármacos , Toxinas Biológicas/toxicidade , Animais , Bioensaio/métodos , Células Cultivadas , Genes Reporter/genética , Hepatócitos/enzimologia , Hepatócitos/patologia , Estudos Longitudinais , Luciferases/genética , Camundongos , Esferoides Celulares/enzimologia , Esferoides Celulares/patologia
9.
Chem Res Toxicol ; 30(7): 1436-1447, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28614665

RESUMO

Consumers are exposed to a plethora of anthropogenic and natural substances that can act as agonists or antagonists for various transcription factors. Depending on the exposure and potency, such interactions can potentially lead to adverse health effects, particularly for substances with multiple molecular targets. The early detection of such interactions is thus of high toxicological interest. Here, we report on the development of a new cellular dual-color reporter assay that allows for time-resolved and quantitative recording of estrogen receptor (ER) and aryl hydrocarbon receptor (AHR) activation in living cells. Both receptors are known for their ligand promiscuity. Moreover, both receptor signaling pathways are interconnected by direct protein-protein interactions as well as by shared protein factors and the competition for ligands. The assay is based on two rare beetle luciferases that emit light in the red (SLR) and green (ELuc) spectrum and that have been stably inserted into human T-47D mammary carcinoma cells. The corresponding cell line is termed "XEER" and has been successfully subjected to proof-of-principle studies using prototypical ER and AHR ligands as well as various phytochemicals, xenobiotics, and extracts from various plastic products.


Assuntos
Cor , Estrogênios/análise , Estrogênios/metabolismo , Luciferases/metabolismo , Receptores de Hidrocarboneto Arílico/análise , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Células Tumorais Cultivadas
10.
Glycobiology ; 26(11): 1248-1256, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27496768

RESUMO

Yeast cells have been engineered for the production of glycoproteins as biopharmaceuticals with humanized N-linked oligosaccharides. The suppression of yeast-specific O-mannosylation is important to reduce immune response and to improve heterologous protein productivity in the production of biopharmaceuticals. However, so far, there are few reports of the engineering of both N-linked and O-linked oligosaccharides in yeast cells. In the present study, we describe the generation of a Saccharomyces cerevisiae strain capable of producing a glycoprotein with humanized Man5GlcNAc2 N-linked oligosaccharides, an intermediate of mammalian hybrid- and complex-type oligosaccharides, while suppressing O-mannosylation. First, a yeast strain that produces a glycoprotein with Man5GlcNAc2 was isolated by introducing msdS encoding α-1,2-mannosidase into a strain synthesizing Man8GlcNAc2 N-linked oligosaccharides. Next, to suppress O-mannosylation, an O-mannosyltransferase-deficient strain was generated by disrupting PMT1 and PMT2 Although the relative amount of O-linked oligosaccharides in the disruptant was reduced to approximately 40% of that in wild type cells, this strain exhibited growth defects and decreased protein productivity. To overcome the growth defects, we applied a mutagenesis technique that is based on the disparity theory of evolution. Finally, to improve protein productivity of the growth-recovered strain, vacuolar proteases PEP4 and PRB1 were further disrupted. Thus, by combining genetic engineering and disparity mutagenesis, we generated an Saccharomyces cerevisiae strain whose N- and O-linked oligosaccharide synthetic pathways were engineered to effectively produce the heterologous protein.


Assuntos
Engenharia Genética , Oligossacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicoproteínas/biossíntese , Glicoproteínas/química , Oligossacarídeos/química , Oligossacarídeos/genética , Saccharomyces cerevisiae/química
11.
Molecules ; 21(6)2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27248987

RESUMO

Many polyphenols that contain more than two phenolic hydroxyl groups are natural antioxidants and can provide health benefits to humans. These polyphenols include, for example, oleuropein, hydroxytyrosol, catechin, chlorogenic acids, hesperidin, nobiletin, and isoflavones. These have been studied widely because of their strong radical-scavenging and antioxidative effects. These effects may contribute to the prevention of diseases, such as diabetes. Insulin secretion, insulin resistance, and homeostasis are important factors in the onset of diabetes, a disease that is associated with dysfunction of pancreatic ß-cells. Oxidative stress is thought to contribute to this dysfunction and the effects of antioxidants on the pathogenesis of diabetes have, therefore, been investigated. Here, we summarize the antioxidative effects of polyphenols from the perspective of their radical-scavenging activities as well as their effects on signal transduction pathways. We also describe the preventative effects of polyphenols on diabetes by referring to recent studies including those reported by us. Appropriate analytical approaches for evaluating antioxidants in studies on the prevention of diabetes are comprehensively reviewed.


Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Hipoglicemiantes/farmacologia , Isoflavonas/farmacologia , Polifenóis/farmacologia , Animais , Carotenoides/química , Carotenoides/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/efeitos adversos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
12.
Eur J Neurosci ; 42(9): 2678-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342201

RESUMO

Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms.


Assuntos
Arginina Vasopressina/genética , Ritmo Circadiano/genética , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Transcrição Gênica , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Medições Luminescentes , Masculino , Camundongos , Camundongos Transgênicos
13.
Mutagenesis ; 30(4): 537-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805024

RESUMO

Epidemiological studies have demonstrated a close association between infection with Helicobacter pylori (H.pylori) and the development of gastric carcinoma. Chronic H.pylori infection increases the frequency of mutation in gastric epithelial cells. However, the mechanism by which infection of H.pylori leads to mutation in gastric epithelial cells is unclear. We suspected that components in H.pylori may be related to the mutagenic response associated with DNA alkylation, and could be detected with the Ames test using a more sensitive strain for alkylating agents. Our investigation revealed that an extract of H.pylori was mutagenic in the Ames test with Salmonella typhimurium YG7108, which is deficient in the DNA repair of O(6)-methylguanine. The extract of H.pylori may contain methylating or alkylating agents, which might induce O (6)-alkylguanine in DNA. Mutagenicity of the alkylating agents N-methyl-N-nitrosourea (MNU) and N-methyl-N'-nitro-N-nitrosoguanidine in the Ames test with S.typhimurium TA1535 was enhanced significantly in the presence of the extract of H.pylori. The tested extracts of H.pylori resulted in a significant induction of micronuclei in human-derived lymphoblastoid cells. Heat instability and dialysis resistance of the extracts of H.pylori suggest that the mutagenic component in the extracts of H.pylori is a heat-unstable large molecule or a heat-labile small molecule strongly attached or adsorbed to a large molecule. Proteins in the extracts of H.pylori were subsequently fractionated using ammonium sulphate precipitation. However, all fractions expressed enhancing effects toward MNU mutagenicity. These results suggest the mutagenic component is a small molecule that is absorbed into proteins in the extract of H.pylori, which resist dialysis. Continuous and chronic exposure of gastric epithelial cells to the alkylative mutagenic component from H.pylori chronically infected in the stomach might be a causal factor in the gastric carcinogenesis associated with H.pylori.


Assuntos
Extratos Celulares/farmacologia , Dano ao DNA/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Linfócitos/efeitos dos fármacos , Mutagênicos/farmacologia , Anemia Ferropriva/microbiologia , Anemia Ferropriva/patologia , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Gastrite Hipertrófica/microbiologia , Gastrite Hipertrófica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/isolamento & purificação , Humanos , Linfócitos/metabolismo , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutação/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Úlcera Gástrica/microbiologia , Úlcera Gástrica/patologia
14.
Proc Natl Acad Sci U S A ; 109(19): 7523-8, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529368

RESUMO

The development of optical methods to control cellular functions is important for various biological applications. In particular, heat shock promoter-mediated gene expression systems by laser light are attractive targets for controlling cellular functions. However, previous approaches have considerable technical limitations related to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, which have poor penetration into biological tissue. Biological tissue is relatively transparent to light inside the diagnostic window at wavelengths of 650-1,100 nm. Here we present a unique optical biotechnological method using carbon nanohorn (CNH) that transforms energy from diagnostic window laser light to heat to control the expression of various genes. We report that with this method, laser irradiation within the diagnostic window resulted in effective heat generation and thus caused heat shock promoter-mediated gene expression. This study provides an important step forward in the development of light-manipulated gene expression technologies.


Assuntos
Regulação da Expressão Gênica/genética , Temperatura Alta , Luz , Nanotubos de Carbono/toxicidade , Animais , Biotecnologia/métodos , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/efeitos da radiação , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Força Atômica , Microscopia Confocal , Células NIH 3T3 , Nanotubos de Carbono/química , Regiões Promotoras Genéticas/genética , Soroalbumina Bovina/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Espectrofotometria
15.
Anal Bioanal Chem ; 406(23): 5735-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015042

RESUMO

Bioluminescence imaging is widely used to monitor cellular events, including gene expression in vivo and in vitro. Moreover, recent advances in luciferase technology have made possible imaging at the single-cell level. To improve the bioluminescence imaging system, we have developed a dual-color imaging system in which the green-emitting luciferase from a Brazilian click beetle (Emerald Luc, ELuc) and the red-emitting luciferase from a railroad worm (Stable Luciferase Red, SLR) were used as reporters, which were localized to the peroxisome and the nucleus, respectively. We clearly captured simultaneously the subcellular localization of ELuc in the peroxisome and SLR in the nucleus of a single cell using a high-magnification objective lens with 3-min exposure time without binning using a combination of optical filters. Furthermore, to apply this system to quantitative time-lapse imaging, the activation of nuclear factor triggered by tumor necrosis factor α was measured using nuclear-targeted SLR and peroxisome-targeted ELuc as the test and internal control reporters, respectively. We successfully quantified the kinetics of activation of nuclear factor κB using nuclear-targeted SLR and the transcriptional change of the internal control promoter using peroxisome-targeted ELuc simultaneously in a single cell, and showed that the activation kinetics, including activation rate and amplitude, differed among cells. The results demonstrated that this imaging system can visualize the subcellular localization of reporters and track the expressions of two genes simultaneously at subcellular resolution.


Assuntos
Células/química , Besouros/enzimologia , Proteínas de Insetos/química , Luciferases/química , Medições Luminescentes/métodos , Imagem com Lapso de Tempo/métodos , Animais , Cor , Camundongos , Células NIH 3T3 , Sensibilidade e Especificidade
16.
J Clin Biochem Nutr ; 55(3): 216-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25411529

RESUMO

Tsumura Suzuki Obese Diabetes (TSOD) mouse, a model of obese type 2 diabetes, older than around 11 weeks of age develops diabetic phenotypes. Previous studies have indicated that the development of diabetes is partly due to three loci associated with body weight and glucose homeostasis. However, little is known about the initial events triggering the development of the diabetic phenotypes in TSOD mouse. Here, we investigated the alteration of diabetes-related parameters, including the levels of blood glucose and inflammatory cytokines, and the oxidative stress status, in young TSOD mice. TSOD mice at 5 weeks of age showed increases in body weight and plasma total cholesterol level, but not hyperglycemia or impaired glucose tolerance, compared with age-matched control Tsumura Suzuki Non-Obese (TSNO) mice. Plasma tumor necrosis factor (TNF)-α and interleukin (IL)-6 were not detected in TSOD mice at 5 weeks of age. However, plasma total hydroxyoctadecadienoic acid (tHODE), a biomarker of oxidative stress, was increased in TSOD mice relative to TSNO mice at same age. The results demonstrated that young TSOD mice are exposed to oxidative stress before developing the diabetic phenotypes, and suggested that oxidative stress is an initial event triggering the development of diabetes in TSOD mice.

17.
Front Neurosci ; 18: 1186677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694901

RESUMO

DNA aptamers can bind specifically to biomolecules to modify their function, potentially making them ideal oligonucleotide therapeutics. Herein, we screened for DNA aptamer of melanopsin (OPN4), a blue-light photopigment in the retina, which plays a key role using light signals to reset the phase of circadian rhythms in the central clock. Firstly, 15 DNA aptamers of melanopsin (Melapts) were identified following eight rounds of Cell-SELEX using cells expressing melanopsin on the cell membrane. Subsequent functional analysis of each Melapt was performed in a fibroblast cell line stably expressing both Period2:ELuc and melanopsin by determining the degree to which they reset the phase of mammalian circadian rhythms in response to blue-light stimulation. Period2 rhythmic expression over a 24-h period was monitored in Period2:ELuc stable cell line fibroblasts expressing melanopsin. At subjective dawn, four Melapts were observed to advance phase by >1.5 h, while seven Melapts delayed phase by >2 h. Some Melapts caused a phase shift of approximately 2 h, even in the absence of photostimulation, presumably because Melapts can only partially affect input signaling for phase shift. Additionally, some Melaps were able to induce phase shifts in Per1::luc transgenic (Tg) mice, suggesting that these DNA aptamers may have the capacity to affect melanopsin in vivo. In summary, Melapts can successfully regulate the input signal and shifting phase (both phase advance and phase delay) of mammalian circadian rhythms in vitro and in vivo.

18.
J Neurosci ; 32(26): 8900-18, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745491

RESUMO

Circadian oscillators in the suprachiasmatic nucleus (SCN) collectively orchestrate 24 h rhythms in the body while also coding for seasonal rhythms. Although synchronization is required among SCN oscillators to provide robustness for regular timekeeping (Herzog et al., 2004), heterogeneity of period and phase distributions is needed to accommodate seasonal variations in light duration (Pittendrigh and Daan, 1976b). In the mouse SCN, the heterogeneous phase distribution has been recently found in the cycling of clock genes Period 1 and Period 2 (Per1, Per2) and has been shown to reorganize by relative day lengths (Inagaki et al., 2007). However, it is not yet clearly understood what underlies the spatial patterning of Per1 and Per2 expression (Yamaguchi et al., 2003; Foley et al., 2011) and its plasticity. We found that the period of the oscillation in Bmal1 expression, a positive-feedback component of the circadian clock, preserves the behavioral circadian period under culture and drives clustered oscillations in the mouse SCN. Pharmacological and physical isolations of SCN subregions indicate that the period of Bmal1 oscillation is subregion specific and is preserved during culture. Together with computer simulations, we show that either the intercellular coupling does not strongly influence the Bmal1 oscillation or the nature of the coupling is more complex than previously assumed. Furthermore, we have found that the region-specific periods are modulated by the light conditions that an animal is exposed to. Based on these, we suggest that the period forms the basis of seasonal coding in the SCN.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Biológicos/fisiologia , Ritmo Circadiano/genética , Fotoperíodo , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição ARNTL/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Mapeamento Encefálico , Ritmo Circadiano/efeitos dos fármacos , Análise por Conglomerados , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dinâmica não Linear , Técnicas de Cultura de Órgãos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Piridazinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Software , Estatística como Assunto , Núcleo Supraquiasmático/citologia , Tetrodotoxina/farmacologia
19.
Eur J Neurosci ; 38(6): 2832-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23869693

RESUMO

The suprachiasmatic nucleus (SCN) is the mammalian circadian rhythm center. Individual oscillating neurons have different endogenous circadian periods, but they are usually synchronized by an intercellular coupling mechanism. The differences in the period of each oscillating neuron have been extensively studied; however, the clustering of oscillators with similar periods has not been reported. In the present study, we artificially disrupted the intercellular coupling among oscillating neurons in the SCN and observed regional differences in the periods of the oscillating small-latticed regions of the SCN using a transgenic rat carrying a luciferase reporter gene driven by regulatory elements from a per2 clock gene (Per2::dluc rat). The analysis divided the SCN into two regions--aregion with periods shorter than 24 h (short-period region, SPR) and another with periods longer than 24 h (long-period region, LPR). The SPR was located in the smaller medial region of the dorsal SCN, whereas the LPR occupied the remaining larger region. We also found that slices containing the medial region of the SCN generated shorter circadian periods than slices that contained the lateral region of the SCN. Interestingly, the SPR corresponded well with the region where the SCN phase wave is generated. We numerically simulated the relationship between the SPR and a large LPR. A mathematical model of the SCN based on our findings faithfully reproduced the kinetics of the oscillators in the SCN in synchronized conditions, assuming the existence of clustered short-period oscillators.


Assuntos
Relógios Circadianos , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/efeitos dos fármacos , Colforsina/farmacologia , Masculino , Proteínas Circadianas Period/genética , Ratos , Ratos Transgênicos , Ratos Wistar , Núcleo Supraquiasmático/efeitos dos fármacos
20.
Anal Biochem ; 439(2): 80-7, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23624321

RESUMO

A firefly luciferase reporter enabled us to monitor promoter activity in vivo as well as ex vivo; however, this requires a sufficient supply of the substrate luciferin and specific monitoring devices. To overcome these disadvantages, we developed transgenic rats carrying a secreted enzyme Cypridina luciferase (CLuc) reporter under the promoter of clock gene Per2 (Per2-CLuc). Per2-CLuc activity in serially sampled blood from freely moving rats exhibited robust circadian rhythms with a peak at early morning. The Per2-CLuc bioluminescence could be quantified even with approximately 100pl of plasma. Plasma Per2-CLuc rhythms were phase reversed, and the level was reduced by restricting food access for 2h during the light phase, suggesting that the plasma Per2-CLuc rhythms reflect the phase of peripheral clocks entrained to feeding cues as well as fuel metabolism. Fasting for 2days did not alter the circadian Per2-CLuc rhythms in rats, suggesting that feeding per se did not affect the circadian Per2-CLuc rhythms. Tissue-specific Per2-CLuc rhythms were observed in culture medium of peripheral tissues. The Per2-CLuc reporter is a powerful tool to access gene expression in vivo as well as ex vivo with ordinary laboratory equipment.


Assuntos
Ritmo Circadiano/fisiologia , Crustáceos/enzimologia , Luciferases/metabolismo , Animais , Feminino , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Luciferases/genética , Masculino , Camundongos , Células NIH 3T3 , Organismos Geneticamente Modificados , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA