Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 185: 106238, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495178

RESUMO

L-DOPA-induced dyskinesia (LID) is a frequent adverse side effect of L-DOPA treatment in Parkinson's disease (PD). Understanding the mechanisms underlying the development of these motor disorders is needed to reduce or prevent them. We investigated the role of TrkB receptor in LID, in hemiparkinsonian mice treated by chronic L-DOPA administration. Repeated L-DOPA treatment for 10 days specifically increased full-length TrkB receptor mRNA and protein levels in the dopamine-depleted dorsal striatum (DS) compared to the contralateral non-lesioned DS or to the DS of sham-operated animals. Dopamine depletion alone or acute L-DOPA treatment did not significantly increase TrkB protein levels. In addition to increasing TrkB protein levels, chronic L-DOPA treatment activated the TrkB receptor as evidenced by its increased tyrosine phosphorylation. Using specific agonists for the D1 or D2 receptors, we found that TrkB increase is D1 receptor-dependent. To determine the consequences of these effects, the TrkB gene was selectively deleted in striatal neurons expressing the D1 receptor. Mice with TrkB floxed gene were injected with Cre-expressing adeno-associated viruses or crossed with Drd1-Cre transgenic mice. After unilateral lesion of dopamine neurons in these mice, we found an aggravation of axial LID compared to the control groups. In contrast, no change was found when TrkB deletion was induced in the indirect pathway D2 receptor-expressing neurons. Our study suggests that BDNF/TrkB signaling plays a protective role against the development of LID and that agonists specifically activating TrkB could reduce the severity of LID.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Camundongos , Animais , Levodopa/toxicidade , Antiparkinsonianos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Receptor trkB/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo , Receptores de Dopamina D2/metabolismo , Oxidopamina/farmacologia
2.
Arch Biochem Biophys ; 750: 109821, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979903

RESUMO

The metastases of breast cancer to bone often cause osteolytic lesions not only by stimulating osteoclasts to resorb the bone but also by inhibiting osteoblasts from bone formation. Although tumor cell-derived extracellular vesicles (EVs) promote osteoclast differentiation and bone resorption, their roles in osteoblast differentiation and functions have not been elucidated. In this study, we investigated the effects of breast cancer cell-derived EVs on osteoblast differentiation and functions in vitro. We found that upon osteogenic induction, 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) were inhibited matrix mineralization of ST2 mouse bone marrow stromal cells. Temporal expression analysis of osteoblast marker genes, including runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), collagen type I (Col1a1), bone sialoprotein (Bsp), and osteocalcin (Bglap) revealed that 4T1-EVs decreased their expression during the late stage of osteoblast differentiation. Elevated levels of c-Jun N-terminal kinase (JNK) phosphorylation, upon osteogenic induction, were diminished by 4T1-EVs, significantly. In contrast, the nullification of reduced JNK phosphorylation by anisomycin, a potent JNK activator, increased the expression levels of osteoblast differentiation markers. Overall, our data indicated that 4T1-EVs affect osteoblast maturation, at least partially, through the regulation of JNK activity, which provides novel insights into the pathological impact of osteolytic bone metastasis and the role of EVs in osteoblast differentiation.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Animais , Camundongos , Osso e Ossos , Diferenciação Celular , Osteoblastos , Osteogênese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
3.
J Immunol ; 206(12): 3053-3063, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34078710

RESUMO

Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) is used to treat systemic lupus erythematosus (SLE)-like disorders in MRL/lpr mice. However, the mechanisms underlying the SHED-based therapy remain unclear. In this study, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) ameliorate the SLE-like phenotypes in MRL/lpr mice. SHED-EVs were isolated from the culture supernatant of SHED. SHED-EVs were treated with or without RNase and systemically administered to MRL/lpr mice. Subsequently, recipient bone marrow mesenchymal stem cells (BMMSCs) isolated from SHED-EV-administered MRL/lpr mice were examined for the in vitro and in vivo activity of hematopoietic niche formation and immunoregulation. Furthermore, the recipient BMMSCs were secondarily transplanted into MRL/lpr mice. The systemic SHED-EV infusion ameliorated the SLE-like phenotypes in MRL/lpr mice and improved the functions of recipient BMMSCs by rescuing Tert mRNA-associated telomerase activity, hematopoietic niche formation, and immunoregulation. The secondary transplantation of recipient BMMSCs recovered the immune condition and renal functions of MRL/lpr mice. The RNase treatment depleted RNAs, such as microRNAs, within SHED-EVs, and the RNA-depleted SHED-EVs attenuated the benefits of SHED-EVs in MRL/lpr mice. Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating SLE by targeting the telomerase activity of recipient BMMSCs.


Assuntos
Vesículas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nicho de Células-Tronco/imunologia , Células-Tronco/imunologia , Telomerase/imunologia , Dente Decíduo/imunologia , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Cancer Sci ; 113(12): 4219-4229, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053115

RESUMO

Aberrant osteoclast formation and activation are the hallmarks of osteolytic metastasis. Extracellular vesicles (EVs), released from bone metastatic tumor cells, play a pivotal role in the progression of osteolytic lesions. However, the mechanisms through which tumor cell-derived EVs regulate osteoclast differentiation and function have not been fully elucidated. In this study, we found that 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) are taken up by mouse bone marrow macrophages to facilitate osteoclastogenesis. Furthermore, treatment of mature osteoclasts with 4T1-EVs promoted bone resorption, which was accompanied by enhanced survival of mature osteoclasts through the negative regulation of caspase-3. By comparing the miRNA content in 4T1-EVs with that in 67NR nonmetastatic mouse mammary tumor cell-derived EVs (67NR-EVs), miR-92a-3p was identified as one of the most enriched miRNAs in 4T1-EVs, and its transfer into mature osteoclasts significantly reduced apoptosis. Bioinformatic and Western blot analyses revealed that miR-92a-3p directly targeted phosphatase and tensin homolog (PTEN) in mature osteoclasts, resulting in increased levels of phospho-Akt. Our findings provide novel insights into the EV-mediated regulation of osteoclast survival through the transfer of miR-92a-3p, which enhances mature osteoclast survival via the Akt survival signaling pathway, thus promoting bone resorption.


Assuntos
Reabsorção Óssea , Vesículas Extracelulares , MicroRNAs , Osteoclastos , Animais , Camundongos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
5.
Lab Invest ; 101(12): 1571-1584, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537825

RESUMO

Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells. We have previously reported the presence of TNTs in the fusion process of osteoclastogenesis. Here we analyzed morphological details of TNTs using scanning electron microscopy. The osteoclast precursor cell line RAW-D was stimulated to form osteoclast-like cells, and morphological details in the appearance of TNTs were extensively analyzed. Osteoclast-like cells could be classified into three types; early osteoclast precursors, late osteoclast precursors, and multinucleated osteoclast-like cells based on the morphological characteristics. TNTs were frequently observed among these three types of cells. TNTs could be classified into thin, medium, and thick TNTs based on the diameter and length. The shapes of TNTs were dynamically changed from thin to thick. Among them, medium TNTs were often observed between two remote cells, in which side branches attached to the culture substrates and beaded bulge-like structures were often observed. Cell-cell interaction through TNTs contributed to cell migration and rapid transport of information between cells. TNTs were shown to be involved in cell-cell fusion between osteoclast precursors and multinucleated osteoclast-like cells, in which movement of membrane vesicles and nuclei was observed. Formation of TNTs was also confirmed in primary cultures of osteoclasts. Furthermore, we have successfully detected TNTs formed between osteoclasts observed in the bone destruction sites of arthritic rats. Thus, formation of TNTs may be important for the differentiation of osteoclasts both in vitro and in vivo. TNTs could be one target cellular structure for the regulation of osteoclast differentiation and function in bone diseases.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Nanotubos/ultraestrutura , Osteogênese , Animais , Fusão Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos Endogâmicos Lew
6.
Lab Invest ; 101(11): 1449-1457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611305

RESUMO

Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.


Assuntos
Osso e Ossos/citologia , Calcitonina/metabolismo , Diferenciação Celular , Osteogênese , Receptores de Adrenomedulina/metabolismo , Animais , Animais Recém-Nascidos , Osso e Ossos/irrigação sanguínea , Ratos Sprague-Dawley
7.
Eur J Neurosci ; 54(4): 5327-5340, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34273137

RESUMO

Dopamine D1 receptors play an important role in the effects of cocaine. Here, we investigated the role of neurons which express these receptors (D1-neurons) in the acute locomotor effects of cocaine and the locomotor sensitization observed after a second injection of this drug, using the previously established two-injection protocol of sensitization. We inhibited D1-neurons using double transgenic mice conditionally expressing the inhibitory Gi-coupled designer receptor exclusively activated by designer drugs (Gi-DREADD) in D1-neurons. Chemogenetic inhibition of D1-neurons by a low dose of clozapine (0.1 mg/kg) decreased the cocaine-induced expression of Fos in striatal neurons. It diminished the basal locomotor activity and acute hyper-locomotion induced by cocaine (20 mg/kg). Clozapine 0.1 mg/kg had no effect by itself and did not alter cocaine effects in wild-type mice. Inhibition of D1-neurons during the first cocaine administration prevented the sensitization of the locomotor response in response to a second cocaine administration 10 days later. On Day 11, inhibition of D1-neurons by clozapine stimulation of Gi-DREADD blocked cocaine-induced locomotion including in sensitized mice, whereas on Day 12, in the absence of clozapine and D1-neurons inhibition, all mice displayed a sensitized response to cocaine. These results show that chemogenetic inhibition of D1-neurons decreases spontaneous and cocaine-induced locomotor activity. It prevents sensitization induction and blocks sensitized locomotion in a two-injection protocol of sensitization but does not reverse established sensitization. Our study further supports the central role of D1-neurons in mediating the acute locomotor effects of cocaine and its sensitization.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Camundongos , Atividade Motora , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo
8.
Neuroimage ; 220: 117079, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585345

RESUMO

Abnormal structural and functional connectivity in the striatum during neurological disorders has been reported using functional magnetic resonance imaging (fMRI), although the effects of cell-type specific neuronal stimulation on fMRI and related behavioral alterations are not well understood. In this study, we combined DREADD technology with fMRI ("chemo-fMRI") to investigate alterations of spontaneous neuronal activity. These were induced by the unilateral activation of dopamine D1 receptor-expressing neurons (D1-neurons) in the mouse dorsal striatum (DS). After clozapine (CLZ) stimulation of the excitatory DREADD expressed in D1-neurons, the fractional amplitude of low frequency fluctuations (fALFF) increased bilaterally in the medial thalamus, nucleus accumbens and cortex. In addition, we found that the gamma-band of local field potentials was increased in the stimulated DS and cortex bilaterally. These results provide insights for better interpretation of cell type-specific activity changes in fMRI.


Assuntos
Corpo Estriado/diagnóstico por imagem , Atividade Motora/fisiologia , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Animais , Clozapina/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos
9.
Chem Senses ; 45(3): 203-209, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32010939

RESUMO

Estrogen has been shown to affect differentiation and proliferation as a mitogen in various neural systems. Olfactory receptor cells are unique within the nervous system, and have the ability to regenerate even after an individual has reached maturity. Olfactory receptor cells also regenerate after experimentally induced degeneration. The purpose of this study is to observe the influence of estrogen depletion induced by ovariectomy on olfactory nerve regeneration. Female mice underwent bilateral ovariectomy at 8 weeks of age and received intraperitoneal administration of methimazole 1 week later. At 2, 4, and 6 weeks after methimazole administration, the olfactory mucosa was analyzed histochemically to determine olfactory epithelium (OE) thickness, olfactory marker protein distribution, and Ki-67 immunoreactivity. Furthermore, 2 weeks after ovariectomy, trkA protein distribution in the OE and nerve growth factor (NGF) levels in the olfactory bulb were determined by immunohistochemistry and enzyme-linked immunosorbent assay, respectively. Our results showed that in ovariectomized mice OMP, Ki-67, and trkA-immunopositive cells expression decreased at 2 weeks after methimazole injection, a time point at which regeneration is underway. At this same time point, although NGF production in the olfactory bulb had increased before methimazole administration, no differences were observed between the ovx and control groups. These results suggest that estrogen depletion induces a suppressive effect on regeneration of olfactory neurons, and that estrogen may have a potential use in the treatment of sensorineural olfactory dysfunction.


Assuntos
Regeneração Nervosa , Nervo Olfatório , Ovariectomia , Animais , Estrogênios/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Regeneração Nervosa/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/patologia , Nervo Olfatório/efeitos dos fármacos , Nervo Olfatório/cirurgia
10.
J Immunol ; 200(1): 218-228, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141864

RESUMO

As osteoclasts have the central roles in normal bone remodeling, it is ideal to regulate only the osteoclasts performing pathological bone destruction without affecting normal osteoclasts. Based on a hypothesis that pathological osteoclasts form under the pathological microenvironment of the bone tissues, we here set up optimum culture conditions to examine the entity of pathologically activated osteoclasts (PAOCs). Through searching various inflammatory cytokines and their combinations, we found the highest resorbing activity of osteoclasts when osteoclasts were formed in the presence of M-CSF, receptor activator of NF-κB ligand, and IL-1ß. We have postulated that these osteoclasts are PAOCs. Analysis using confocal laser microscopy revealed that PAOCs showed extremely high proton secretion detected by the acid-sensitive fluorescence probe Rh-PM and bone resorption activity compared with normal osteoclasts. PAOCs showed unique morphology bearing high thickness and high motility with motile cellular processes in comparison with normal osteoclasts. We further examined the expression of Kindlin-3 and Talin-1, essential molecules for activating integrin ß-chains. Although normal osteoclasts express high levels of Kindlin-3 and Talin-1, expression of these molecules was markedly suppressed in PAOCs, suggesting the abnormality in the adhesion property. When whole membrane surface of mature osteoclasts was biotinylated and analyzed, the IL-1ß-induced cell surface protein was detected. PAOCs could form a subpopulation of osteoclasts possibly different from normal osteoclasts. PAOC-specific molecules could be an ideal target for regulating pathological bone destruction.


Assuntos
Reabsorção Óssea/imunologia , Interleucina-1beta/imunologia , Osteoclastos/imunologia , Animais , Adesão Celular , Células Cultivadas , Regulação para Baixo , Fator Estimulador de Colônias de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Mutantes , Terapia de Alvo Molecular , Receptor Ativador de Fator Nuclear kappa-B/imunologia , Talina/genética , Talina/metabolismo
11.
Lab Invest ; 99(6): 866-884, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742099

RESUMO

Bone remodeling is a continuous process characterized by highly coordinated cell-cell interactions in distinct multi-cellular units. Osteoclasts, which are specialized bone resorbing cells, play a central role in bone remodeling. Although the RANKL/RANK axis determines the gross number of osteoclasts present in bone tissue, detailed molecular events regulating bone remodeling related to osteoclast recruitment, initiation of bone remodeling, and coupling of bone resorption and bone formation are still ambiguous. We hypothesized that osteoblast-specific cell-surface molecules contribute to the molecular modulation of bone remodeling. Therefore, we searched for regulatory cell-surface molecules expressed on osteoblasts by use of B-cell hybridoma technology. We obtained a monoclonal antibody A7 (A7 MAb) highly specific to cells of osteoblast-lineage. Here we describe the expression pattern and possible role of A7 antigen specifically recognized by A7 MAb. In vitro, A7 antigen was expressed on cell-surface of osteoblasts and osteoblast-like bone marrow stromal cells. In vivo, A7 antigen was detected in a subset of bone surface osteoblasts and in osteocytes, with a typical cell membrane expression pattern. Tissue array analysis showed only a limited expression of A7 antigen in osteocytes close to the bone surface. Immunoblotting and immunoprecipitation analysis showed that A7 antigen is a lineage-specific cell-surface protein with an approximate molecular weight of 45 KDa. Cross-linking of cell-surface A7 antigen in cultures of osteoclastogenesis showed stimulation of osteoclast formation. Marked suppression of calcification in primary osteoblast cultures was observed when A7 antigen was cross-linked with anti-A7 antigen MAb, A7 MAb. These data suggest that A7 antigen regulates recruitment of osteoclasts and triggering of calcification. A7 antigen may be an important molecule involved in the precise regulation of bone remodeling.


Assuntos
Remodelação Óssea , Osteoblastos/imunologia , Osteogênese , Animais , Anticorpos Monoclonais/biossíntese , Calcificação Fisiológica , Linhagem Celular Tumoral , Feminino , Masculino , Camundongos Endogâmicos BALB C , Ratos Sprague-Dawley
12.
Chem Senses ; 44(5): 327-338, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30989168

RESUMO

Post-upper respiratory tract infection related olfactory dysfunction typically occurs due to neural damage after an upper respiratory tract infection associated with a common cold or influenza. At present, Tokishakuyakusan, a Japanese traditional Kampo medicine, has been found to be effective for post-viral olfactory dysfunction. However, the pharmacodynamics of Tokishakuyakusan in the treatment of post-viral olfactory dysfunction remains unresolved. We investigated the effects of Tokishakuyakusan on the regeneration of olfactory neurons and expression of nerve growth factor (NGF) in neural systems, using in vivo murine studies and in vitro cell culture studies. Eight-week-old BALB/C female mice were fed a pellet diet with or without Tokishakuyakusan. Degeneration of cells in olfactory epithelium was induced by intraperitoneal methimazole injection. Regeneration of olfactory neurons was observed by histological and immunohistochemical procedures. NGF expression in the olfactory bulb was measured by enzyme-linked immunosorbent assay. NGF gene and protein expression were measured using rat primary cultured astrocytes by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We found that olfactory marker protein, Ki-67, and NGF were more highly expressed in the olfactory epithelium during the regeneration period in mice receiving Tokishakuyakusan. In cultured astrocytes, Tokishakuyakusan as well as its individual components, Atractylodes lancea rhizome and Japanese angelica root, increased NGF expression. Screening assays revealed that NGF production was increased by atractylodin and levistolide A, which are ingredients in Atractylodes lancea rhizome and Japanese angelica root, respectively. These results suggest that Tokishakuyakusan promotes regeneration of olfactory neurons by increasing NGF expression in the olfactory bulb.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Neurônios/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Administração Oral , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Medicamentos de Ervas Chinesas/administração & dosagem , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Injeções Intraperitoneais , Metimazol/administração & dosagem , Metimazol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo
13.
Nihon Ronen Igakkai Zasshi ; 55(3): 411-416, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30122708

RESUMO

For elderly people who are difficult to operate, percutaneous transhepatic gallbladder drainage (PTGBD) is conducted instead. In PTGBD, the bile is drained externally and impaired absorption of fat is a concern. Egg yolk lecithin, which is a fat emulsifier, is not easily broken in emulsion even under a low-pH condition, and the emulsified state is stable. Even in bile duct ligation rats, the emulsifier in egg yolk lecithin emulsion is reported to be superior to lipid absorption using other emulsifiers. Emulsification with egg yolk lecithin may possibly contribute to improvement of nutrition during biliary excretion disorders such as external drainage. We report a case of good progress with enteral nutrition with egg yolk lecithin-mixed liquid diet after PTGBD for acute cholecystitis. The patient was an 80-year-old man with a history of myocardial infarction and dementia. He was diagnosed with calculous cholecystitis, and conservative treatment was started. His cholecystitis was exacerbated, and PTGBD was performed on day 12 of the disease. On imaging, the lower extremities of the duodenum were edematous because of the spread of inflammation. Glutamine preparation alone was administered after resuming fasting. A liquid diet containing egg yolk lecithin, 200 ml of K-LEC (1 kcal/ml), was started from day 23, and was administered three times daily. Liquid diet dose was increased to 1,200 kcal/day with added dietary fiber on day 29. The patient's overall condition improved, and transthyretin level and body weight increased. Thereafter, after swallowing training, the patient was switched to oral meal intake from day 37.


Assuntos
Proteínas Dietéticas do Ovo/administração & dosagem , Nutrição Enteral/métodos , Lecitinas/administração & dosagem , Idoso de 80 Anos ou mais , Colecistite/terapia , Emulsões , Humanos , Masculino
14.
Lab Invest ; 97(10): 1235-1244, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28581488

RESUMO

Laminin-332 (Lm-332), a major basement membrane protein, has been shown to provide a niche for some stem cells. Here, we found that Lm-332 was expressed in osteoblasts, and is implicated in the regulation of osteoclast differentiation. Immunofluorescence analysis of laminin-ß3, a unique component of Lm-332, indicated specific expression of laminin-ß3 in osteoblast-like cells localized on bone surface. RT-PCR analysis confirmed that α3, ß3, and γ2 chains of Lm-332 were all expressed in primary osteoblasts prepared from mouse calvaria. Lm-332 markedly inhibited osteoclastogenesis induced by receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) when bone marrow-derived macrophages (BMMs) were cultured on Lm-332-coated plates. Lm-332 also blocked RANKL-induced activation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) and expression of NFATc1, c-Fos, and c-Jun. Lm-332 suppressed osteoclast differentiation while retaining macrophage phenotypes, including nonspecific esterase activity and gene expression of lysozyme and EGF-like module-containing mucin-like hormone receptor-like 1 (Emr1). Furthermore, the treatment of primary osteoblasts with osteoclastogenic factors dramatically suppressed expression of Lm-332. These findings suggest that Lm-332 produced by osteoblasts in bone tissues has a pivotal role in controlling normal bone remodeling through suppressing osteoclastogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Microambiente Celular/fisiologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteoblastos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , Calinina
15.
Am J Pathol ; 186(9): 2317-25, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393793

RESUMO

Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state.


Assuntos
Diferenciação Celular/genética , Osteoclastos/citologia , Osteogênese/genética , RNA Antissenso/biossíntese , Proteínas WT1/biossíntese , Animais , Northern Blotting , Linhagem Celular , Regulação da Expressão Gênica , Hibridização In Situ , Masculino , Camundongos , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Proteínas WT1/genética
16.
J Sep Sci ; 39(8): 1542-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26914809

RESUMO

Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder.


Assuntos
Impressão Molecular , Extratos Vegetais/isolamento & purificação , Polímeros/química , Estricnina/isolamento & purificação , Strychnos nux-vomica/química , Extratos Vegetais/química , Polimerização , Polímeros/síntese química , Estricnina/química
17.
Biochim Biophys Acta ; 1832(8): 1117-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23517917

RESUMO

Although tetradecanoyl phorbol acetate induced sequence-7 (TIS7) has been identified as a co-activator/repressor of gene transcription in different eukaryotic cells, little attention has been paid to the functionality of TIS7 in adipocytes. Here, we evaluated the possible role of TIS7 in mechanisms underlying the regulation of adipogenesis. TIS7 expression was preferentially up-regulated in white adipose tissues (WAT) of obesity model mice as well as in pre-adipocytic 3T3-L1 cells cultured under hypoxic conditions. TIS7 promoter activity was selectively enhanced by activating transcription factor-6 (ATF6) among different transcription factors tested, while induction of TIS7 by hypoxic stress was markedly prevented by knockdown of ATF6 by shRNA in 3T3-L1 cells. Overexpression of TIS7 markedly inhibited Oil Red O staining and expression of particular adipogenic genes in 3T3-L1 cells. TIS7 synergistically promoted gene transactivation mediated by Wingless-type mouse mammary tumor virus integration site family (Wnt)/ß-catenin, while blockade of the Wnt/ß-catenin pathway by a dominant negative form of T-cell factor-4 (DN-TCF4) markedly prevented the inhibition of adipogenesis in 3T3-L1 cells with TIS7 overexpression. TIS7 predominantly interacted with ß-catenin in the nucleus of WAT in the genetically obese ob/ob mice as well as in 3T3-L1 cells cultured under hypoxic conditions. Both knockdown of TIS7 by shRNA and introduction of DN-TCF4 similarly reversed the hypoxia-induced inhibition of adipogenic gene expression in 3T3-L1 cells. These findings suggest that TIS7 could play a pivotal role in adipogenesis through interacting with ß-catenin to promote the canonical Wnt signaling in pre-adipocytes under hypoxic stress such as obesity.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Hipóxia Celular/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Células 3T3-L1 , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas de Membrana/genética , Camundongos , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima , Proteínas Wnt/genética , beta Catenina/genética
18.
Auris Nasus Larynx ; 51(3): 517-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522356

RESUMO

OBJECTIVE: Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS: To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS: Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION: These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.


Assuntos
Movimento Celular , Metimazol , Bulbo Olfatório , Animais , Bulbo Olfatório/patologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/citologia , Metimazol/farmacologia , Camundongos , Antitireóideos/farmacologia , Nervo Olfatório/patologia , Proteína de Marcador Olfatório/metabolismo , Modelos Animais de Doenças , Masculino
19.
Sci Rep ; 14(1): 6719, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509204

RESUMO

Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Camundongos , Animais , Ligamento Periodontal , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Células Cultivadas , Diferenciação Celular , Células-Tronco , Doenças Periodontais/terapia , Doenças Periodontais/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Ligamentos , Osteogênese/fisiologia
20.
J Biol Chem ; 287(40): 33293-303, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22879594

RESUMO

A view that signaling machineries for the neurotransmitter γ-aminobutyric acid (GABA) are functionally expressed by cells outside the central nervous system is now prevailing. In this study, we attempted to demonstrate functional expression of GABAergic signaling molecules by chondrocytes. In cultured murine costal chondrocytes, mRNA was constitutively expressed for metabotropic GABA(B) receptor subunit-1 (GABA(B)R1), but not for GABA(B)R2. Immunohistochemical analysis revealed the predominant expression of GABA(B)R1 by prehypertrophic to hypertrophic chondrocytes in tibial sections of newborn mice. The GABA(B)R agonist baclofen failed to significantly affect chondrocytic differentiation determined by Alcian blue staining and alkaline phosphatase activity in cultured chondrocytes, whereas newborn mice knocked out of GABA(B)R1 (KO) showed a decreased body size and delayed calcification in hyoid bone and forelimb and hindlimb digits. Delayed calcification was also seen in cultured metatarsals from KO mice with a marked reduction of Indian hedgehog gene (Ihh) expression. Introduction of GABA(B)R1 led to synergistic promotion of the transcriptional activity of activating transcription factor-4 (ATF4) essential for normal chondrogenesis, in addition to facilitating ATF4-dependent Ihh promoter activation. Although immunoreactive ATF4 was negligibly detected in the nucleus of chondrocytes from KO mice, ATF4 expression was again seen in the nucleus and cytoplasm after the retroviral introduction of GABA(B)R1 into cultured chondrocytes from KO mice. In nuclear extracts of KO chondrocytes, a marked decrease was seen in ATF4 DNA binding. These results suggest that GABA(B)R1 positively regulates chondrogenesis through a mechanism relevant to the acceleration of nuclear translocation of ATF4 for Ihh expression in chondrocytes.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Condrogênese/genética , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Receptores de GABA-A/fisiologia , Animais , Doenças Ósseas/metabolismo , Calcinose , Sistema Nervoso Central/metabolismo , Condrócitos/citologia , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fenótipo , Regiões Promotoras Genéticas , Receptores de GABA/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA