Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 49(7): 4653-4670, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411573

RESUMO

BACKGROUND: Electrical impedance tomography (EIT) is a nonionizing imaging technique for real-time imaging of ventilation of patients with respiratory distress. Cross-sectional dynamic images are formed by reconstructing the conductivity distribution from measured voltage data arising from applied alternating currents on electrodes placed circumferentially around the chest. Since the conductivity of lung tissue depends on air content, blood flow, and the presence of pathology, the dynamic images provide regional information about ventilation, pulsatile perfusion, and abnormalities. However, due to the ill-posedness of the inverse conductivity problem, EIT images have a coarse spatial resolution. One method of improving the resolution is to include prior information in the reconstruction. PURPOSE: In this work, we propose a technique in which a statistical prior built from an anatomical atlas is used to postprocess EIT reconstructions of human chest data. The effectiveness of the method is demonstrated on data from two patients with cystic fibrosis. METHODS: A direct reconstruction algorithm known as the D-bar method was used to compute a two-dimensional reconstruction of the conductivity distribution in the plane of the electrodes. Reconstructions using one step in an iterative (regularized) Newton's method were also computed for comparison. An anatomical atlas consisting of 1589 synthetic EIT images computed from X-ray computed tomography (CT) scans of 74 adult male subjects was computed for use as a statistical prior. The resolution of the D-bar images was then improved by maximizing the conditional probability density function of an image that is consistent with the a priori information and the statistical model. A new method to evaluate the accuracy of the EIT images using CT scans of the imaged patient as ground truth is presented. The novel approach is tested on data from two patients with cystic fibrosis. RESULTS AND CONCLUSIONS: The D-bar images resulted in better structural similarity index measures (SSIM) and multiscale (MS) SSIM measures for both subjects using the mask or amplitude evaluation approach than the one-step (regularized) Newton's method. Further improvement was achieved using the Schur complement (SC) approach, with MS-SSIM values of 0.718 and 0.682 using SC evaluated with the mask and amplitude approach, respectively, for Patient 1, and MS-SSIM values of 0.726 and 0.692 using SC evaluated with the mask and amplitude approach, respectively, for Patient 2. The results from applying an anatomical atlas and statistical prior to EIT data from two patients with cystic fibrosis suggest that the spatial resolution of the EIT image can be improved to reveal pathology that may be difficult to discern in the original EIT image. The novel metric of evaluation is consistent with the appearance of improved spatial resolution and provides a new way to evaluate the accuracy of EIT reconstructions when a CT scan is available.


Assuntos
Fibrose Cística , Tomografia , Adulto , Algoritmos , Estudos Transversais , Impedância Elétrica , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/fisiologia , Masculino , Tomografia/métodos
2.
IEEE Trans Med Imaging ; 39(12): 4085-4093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746149

RESUMO

Electrical impedance tomography (EIT) is a non-invasive medical imaging technique in which images of the conductivity in a region of interest in the body are computed from measurements of voltages on electrodes arising from low-frequency, low-amplitude applied currents. Mathematically, the inverse conductivity problem is nonlinear and ill-posed, and the reconstructions have characteristically low spatial resolution. One approach to improve the spatial resolution of EIT images is to include anatomically and physiologically-based prior information in the reconstruction algorithm. Statistical inversion theory provides a means of including prior information from a representative sample population. In this paper, a method is proposed to introduce statistical prior information into the D-bar method based on Schur complement properties. The method presents an improvement of the image obtained by the D-bar method by maximizing the conditional probability density function of an image that is consistent with a prior information and the model, given a D-bar image computed from the voltage measurements. Experimental phantoms show an improved spatial resolution by the use of the proposed method for the D-bar image reconstructions.


Assuntos
Algoritmos , Imagens de Fantasmas , Tomografia , Impedância Elétrica , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA