Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(2): 464-74, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26997485

RESUMO

A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host's phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct.


Assuntos
Arabidopsis/microbiologia , Colletotrichum/isolamento & purificação , Fosfatos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Colletotrichum/fisiologia , Endófitos , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Espanha , Simbiose
2.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459738

RESUMO

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Técnicas de Genotipagem/métodos , Primers do DNA/genética , Locos de Características Quantitativas/genética , Oryza/genética , Triticum/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Glycine max/genética , Biblioteca Gênica , Polimorfismo Genético , Produtos Agrícolas/genética , Genótipo
3.
Plant Cell Physiol ; 65(5): 681-693, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38549511

RESUMO

In nature, plants are constantly colonized by a massive diversity of microbes engaged in mutualistic, pathogenic or commensal relationships with the host. Molecular patterns present in these microbes activate pattern-triggered immunity (PTI), which detects microbes in the apoplast or at the tissue surface. Whether and how PTI distinguishes among soil-borne pathogens, opportunistic pathogens, and commensal microbes within the soil microbiota remains unclear. PTI is a multimodal series of molecular events initiated by pattern perception, such as Ca2+ influx, reactive oxygen burst, and extensive transcriptional and metabolic reprogramming. These short-term responses may manifest within minutes to hours, while the long-term consequences of chronic PTI activation persist for days to weeks. Chronic activation of PTI is detrimental to plant growth, so plants need to coordinate growth and defense depending on the surrounding biotic and abiotic environments. Recent studies have demonstrated that root-associated commensal microbes can activate or suppress immune responses to variable extents, clearly pointing to the role of PTI in root-microbiota interactions. However, the molecular mechanisms by which root commensals interfere with root immunity and root immunity modulates microbial behavior remain largely elusive. Here, with a focus on the difference between short-term and long-term PTI responses, we summarize what is known about microbial interference with host PTI, especially in the context of root microbiota. We emphasize some missing pieces that remain to be characterized to promote the ultimate understanding of the role of plant immunity in root-microbiota interactions.


Assuntos
Microbiota , Imunidade Vegetal , Raízes de Plantas , Raízes de Plantas/microbiologia , Raízes de Plantas/imunologia , Microbiota/fisiologia , Simbiose , Microbiologia do Solo , Plantas/microbiologia , Plantas/imunologia , Plantas/metabolismo
4.
New Phytol ; 241(1): 329-342, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37771245

RESUMO

Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.


Assuntos
Microbiota , Triptofano , Glicosídeo Hidrolases , Bactérias , Solo/química , Microbiologia do Solo , Raízes de Plantas/microbiologia , Rizosfera
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34853170

RESUMO

In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain host-microbe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere.


Assuntos
Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Triptofano/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Disbiose/metabolismo , Fungos/metabolismo , Microbiota/genética , Microbiota/fisiologia , Micoses/metabolismo , Oomicetos/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose/fisiologia
6.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035165

RESUMO

Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such "end" products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.


Assuntos
Adaptação Fisiológica , Arabidopsis/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Enxofre/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulases/metabolismo
7.
Microb Ecol ; 86(4): 2923-2933, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658881

RESUMO

Many insects are associated with endosymbionts that influence the feeding, reproduction, and distribution of their hosts. Although the small green mirid, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), a zoophytophagous predator that feeds on plants as well as arthropods, is a globally important biological control agent, its microbiome has not been sufficiently studied. In the present study, we assessed the microbiome variation in 96 N. tenuis individuals from 14 locations throughout Japan, based on amplicon sequencing of the 16S ribosomal RNA gene. Nine major bacteria associated with N. tenuis were identified: Rickettsia, two strains of Wolbachia, Spiroplasma, Providencia, Serratia, Pseudochrobactrum, Lactococcus, and Stenotrophomonas. Additionally, a diagnostic PCR analysis for three typical insect reproductive manipulators, Rickettsia, Wolbachia, and Spiroplasma, was performed on a larger sample size (n = 360) of N. tenuis individuals; the most prevalent symbiont was Rickettsia (69.7%), followed by Wolbachia (39.2%) and Spiroplasma (6.1%). Although some symbionts were co-infected, their prevalence did not exhibit any specific tendency, such as a high frequency in specific infection combinations. The infection frequency of Rickettsia was significantly correlated with latitude and temperature, while that of Wolbachia and Spiroplasma was significantly correlated with host plants. The predominance of these bacteria and the absence of obligate symbionts suggested that the N. tenuis microbiome is typical for predatory arthropods rather than sap-feeding insects. Rickettsia and Wolbachia were vertically transmitted rather than horizontally transmitted from the prey. The functional validation of each symbiont would be warranted to develop N. tenuis as a biological control agent.


Assuntos
Hemípteros , Microbiota , Rickettsia , Spiroplasma , Wolbachia , Humanos , Animais , Agentes de Controle Biológico , Hemípteros/genética , RNA Ribossômico 16S/genética , Rickettsia/genética , Wolbachia/genética , Simbiose
8.
Plant Cell Physiol ; 63(9): 1230-1241, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792499

RESUMO

Grafting-induced flowering is a key phenomenon to understand systemic floral induction caused by florigen. It can also be used as a breeding technique enabling rapid seed production of crops with long generation times. However, the degree of floral induction in grafted plants is often variable. Moreover, it is difficult in some crop species. Here, we explored the factors promoting variability in the grafting-induced flowering of cabbage (Brassica oleracea L. var. capitata), an important vegetable crop with a long generation time, via the quantitative analysis of florigen accumulation. Significant variability in the flowering response of grafted cabbage was observed when rootstocks of different genotypes were used. As reported previously, B. oleracea rootstocks did not induce the flowering of grafted cabbage plants, but radish (Raphanus sativus L.) rootstocks unstably did, depending on the accessions used. Immunoblotting analysis of the FLOWERING LOCUS T (FT) protein, a main component of florigen, revealed that floral induction was quantitatively correlated with the level of accumulated FT protein in the grafted scion. To identify rootstock factors that cause variability in the floral induction of the grafted scion, we investigated FT protein accumulation and flowering response in grafted scions when the transcription levels of FT and the leaf area of rootstocks were altered by vernalization, daylength and leaf trimming treatments. We concluded that increasing the total amount of FT protein produced in the rootstock is important for the stable floral induction of the grafted cabbage, and this can be accomplished by increasing FT transcription and the leaf area of the rootstock.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Raphanus , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Florígeno/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Raphanus/genética , Raphanus/metabolismo
9.
Plant Physiol ; 179(2): 519-532, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545905

RESUMO

Spatiotemporal coordination of protein trafficking among organelles is essential for eukaryotic cells. The post-Golgi interface, including the trans-Golgi network (TGN), is a pivotal hub for multiple trafficking pathways. The Golgi-released independent TGN (GI-TGN) is a compartment described only in plant cells, and its cellular and physiological roles remain elusive. In Arabidopsis (Arabidopsis thaliana), the SYNTAXIN OF PLANTS (SYP) 4 group Qa-SNARE (soluble N-ethylmaleimide) membrane fusion proteins are shared components of TGN and GI-TGN and regulate secretory and vacuolar transport. Here we reveal that GI-TGNs mediate the transport of the R-SNARE VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP) 721 to the plasma membrane. In interactions with a nonadapted powdery mildew pathogen, the SYP4 group of SNAREs is required for the dynamic relocation of VAMP721 to plant-fungus contact sites via GI-TGNs, thereby facilitating complex formation with its cognate SNARE partner PENETRATION1 to restrict pathogen entry. Furthermore, quantitative proteomic analysis of leaf apoplastic fluid revealed constitutive and pathogen-inducible secretion of cell wall-modification enzymes in a SYP4- and VAMP721-dependent manner. Hence, the GI-TGN acts as a transit compartment between the Golgi apparatus and the plasma membrane. We propose a model in which the GA-TGN matures into the GI-TGN and then into secretory vesicles by increasing the abundance of VAMP721-dependent secretory pathway components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidade , Membrana Celular/metabolismo , Parede Celular/metabolismo , Enzimas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Proteínas R-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Rede trans-Golgi/metabolismo
10.
Plant Cell Physiol ; 60(1): 38-51, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30192961

RESUMO

Parthenocarpy, a process in which fruit set occurs without fertilization, leads to the production of seedless fruit. A number of floral homeotic mutants with abnormal stamen development exhibit parthenocarpic fruit set. Flower development is thought to repress ovary growth before anthesis. However, the mechanism of parthenocarpic fruit development caused by aberrant flower formation is poorly understood. To investigate the molecular mechanism of parthenocarpic fruit development in floral homeotic mutants, we performed functional analysis of Tomato APETALA3 (TAP3) by loss-of-function approaches. Organ-specific promoter was used to induce organ-specific loss of function in stamen and ovary/fruit. We observed increased cell expansion in tap3 mutants and TAP3-RNAi lines during parthenocarpic fruit growth. These were predominantly accompanied by the up-regulation of GA biosynthesis genes, including SlGA20ox1, SlGA20ox2, and SlGA20ox3, as well as reduced expression of the GA-inactivating gene SlGA2ox1 and the auxin signaling gene SlARF7 involved in a crosstalk between GA and auxin. These transcriptional profiles are in agreement with the GA levels in these lines. These results suggest that stamen development negatively regulates fruit set by repressing the GA biosynthesis.


Assuntos
Vias Biossintéticas/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Giberelinas/biossíntese , Partenogênese/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Regulação para Cima/genética , Sequência de Bases , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Mutagênese/genética , Mutação/genética , Especificidade de Órgãos/genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Interferência de RNA , Transdução de Sinais , Transcrição Gênica
12.
Plant Physiol ; 176(1): 538-551, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122987

RESUMO

Glutathione (GSH) and indole glucosinolates (IGs) exert key functions in the immune system of the model plant Arabidopsis (Arabidopsis thaliana). Appropriate GSH levels are important for execution of both pre- and postinvasive disease resistance mechanisms to invasive pathogens, whereas an intact PENETRATION2 (PEN2)-pathway for IG metabolism is essential for preinvasive resistance in this species. Earlier indirect evidence suggested that the latter pathway involves conjugation of GSH with unstable products of IG metabolism and further processing of the resulting adducts to biologically active molecules. Here we describe the identification of Glutathione-S-Transferase class-tau member 13 (GSTU13) as an indispensable component of the PEN2 immune pathway for IG metabolism. gstu13 mutant plants are defective in the pathogen-triggered biosynthesis of end products of the PEN2 pathway, including 4-O-ß-d-glucosyl-indol-3-yl formamide, indole-3-ylmethyl amine, and raphanusamic acid. In line with this metabolic defect, lack of functional GSTU13 results in enhanced disease susceptibility toward several fungal pathogens including Erysiphe pisi, Colletotrichum gloeosporioides, and Plectosphaerella cucumerina Seedlings of gstu13 plants fail also to deposit the (1,3)-ß-glucan cell wall polymer, callose, after recognition of the bacterial flg22 epitope. We show that GSTU13 mediates specifically the role of GSH in IG metabolism without noticeable impact on other immune functions of this tripeptide. We postulate that GSTU13 connects GSH with the pathogen-triggered PEN2 pathway for IG metabolism to deliver metabolites that may have numerous functions in the innate immune system of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Glucosinolatos/metabolismo , Glutationa Transferase/metabolismo , Arabidopsis/imunologia , Vias Biossintéticas/genética , Resistência à Doença , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosinolatos/química , Glutationa/metabolismo , Indóis/química , Indóis/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plântula/metabolismo
13.
Plant J ; 89(2): 204-220, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612205

RESUMO

The endoplasmic reticulum body (ER body) is an organelle derived from the ER that occurs in only three families of the order Brassicales and is suggested to be involved in plant defense. ER bodies in Arabidopsis thaliana contain large amounts of ß-glucosidases, but the physiological functions of ER bodies and these enzymes remain largely unclear. Here we show that PYK10, the most abundant ß-glucosidase in A. thaliana root ER bodies, hydrolyzes indole glucosinolates (IGs) in addition to the previously reported in vitro substrate scopolin. We found a striking co-expression between ER body-related genes (including PYK10), glucosinolate biosynthetic genes and the genes for so-called specifier proteins affecting the terminal products of myrosinase-mediated glucosinolate metabolism, indicating that these systems have been integrated into a common transcriptional network. Consistent with this, comparative metabolite profiling utilizing a number of A. thaliana relatives within Brassicaceae identified a clear phylogenetic co-occurrence between ER bodies and IGs, but not between ER bodies and scopolin. Collectively, our findings suggest a functional link between ER bodies and glucosinolate metabolism in planta. In addition, in silico three-dimensional modeling, combined with phylogenomic analysis, suggests that PYK10 represents a clade of 16 myrosinases that arose independently from the other well-documented class of six thioglucoside glucohydrolases. These findings provide deeper insights into how glucosinolates are metabolized in cruciferous plants and reveal variation of the myrosinase-glucosinolate system within individual plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Glucosinolatos/metabolismo , beta-Glucosidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , Filogenia , beta-Glucosidase/genética
14.
BMC Plant Biol ; 18(1): 47, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29562897

RESUMO

BACKGROUND: Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. RESULTS: To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acß-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acß-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acß-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable endogenous ethylene production, and coincided with increased expression of low temperature-responsive DEGs as well as the decrease in environmental temperature. CONCLUSIONS: These results indicate that kiwifruit possess both ethylene-dependent and low temperature-modulated ripening mechanisms that are distinct and independent of each other. The current work provides a foundation for elaborating the control of these two ripening mechanisms in kiwifruit.


Assuntos
Actinidia/genética , Actinidia/metabolismo , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Pestic Biochem Physiol ; 139: 1-8, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28595916

RESUMO

Monitoring resistance allele frequency at the early stage of resistance development is important for the successful acaricide resistance management. Etoxazole is a mite growth inhibitor to which resistance is conferred by an amino acid substitution in the chitin synthase 1 (CHS1; I1017F) in T. urticae. If the susceptible allele can be specifically digested by restriction endonuclease, the ΔΔCt method using real-time PCR for genomic DNA (RED-ΔΔCt method) may be available for monitoring the resistance allele frequency. We tested whether the etoxazole resistance allele frequency in a pooled sample was accurately measured by the RED-ΔΔCt method and validated whether the resistance variant frequency was correlated with etoxazole resistance phenotype in a bioassay. Finally, we performed a pilot test using field populations. Strong linearity of the measures by the RED-ΔΔCt method with practical resistance allele frequencies; resistance allele frequency in the range between 0.5% to at least 0.75% was strictly represented. The strong linear relationship between hatchability of haploid male eggs after the etoxazole treatments (phenotype) and resistance allele frequencies in their mothers provided direct evidence that I1017F is a primary resistance factor to etoxazole in the strains used for experiments. The pilot test revealed a significant correlation between egg hatchability (including both diploid female eggs and haploid male eggs) and estimators in field populations. Consequently, we concluded that the RED-ΔΔCt method is a powerful tool for monitoring a resistance allele in a pooled sample.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Frequência do Gene/efeitos dos fármacos , Oxazóis/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tetranychidae/genética , Animais , Resistência a Medicamentos/genética , Feminino , Masculino , Tetranychidae/efeitos dos fármacos
17.
Plant Cell Physiol ; 57(11): 2367-2379, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27615796

RESUMO

The aluminum-activated malate transporter (ALMT) family of proteins transports malate and/or inorganic anions across plant membranes. To demonstrate the possible role of ALMT genes in tomato fruit development, we focused on SlALMT4 and SlALMT5, the two major genes expressed during fruit development. Predicted proteins were classified into clade 2 of the family, many members of which localize to endomembranes. Tissue-specific gene expression was determined using transgenic tomato expressing the ß-glucuronidase reporter gene controlled by their own promoters. Both the genes were expressed in vascular bundles connecting to developing seeds in fruit and in the embryo of mature seeds. Further, SlALMT5 was expressed in embryo in developing seeds in fruit. Subcellular localization of both proteins to the endoplasmic reticulum (ER) was established by transiently expressing the green fluorescent protein fusions in plant protoplasts. SlALMT5 probably localized to other endomembranes as well. Localization of SlALMT5 to the ER was also confirmed by immunoblot analysis. The transport function of both SlALMT proteins was investigated electrophysiologically in Xenopus oocytes. SlALMT5 transported malate and inorganic anions such as nitrate and chloride, but not citrate. SlALMT4 also transported malate, but the results were less consistent perhaps because it did not localize strongly to the plasma membrane. To elucidate the physiological role of SlALMT5 further, we overexpressed SlALMT5 in tomato. Compared with the wild type, overexpressors exhibited higher malate and citrate contents in mature seeds, but not in fruit. We conclude that the malate transport function of SlALMT5 expressed in developing fruit influences the organic acid contents in mature seeds.


Assuntos
Alumínio/farmacologia , Frutas/crescimento & desenvolvimento , Malatos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Ácido Cítrico/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Proteínas de Membrana Transportadoras , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Transportadores de Ânions Orgânicos/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
18.
Plant Cell ; 23(9): 3482-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954467

RESUMO

Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles. Using reverse genetics, we show that, unlike the single knockouts nhx1 or nhx2, the double knockout nhx1 nhx2 had significantly reduced growth, smaller cells, shorter hypocotyls in etiolated seedlings and abnormal stamens in mature flowers. Filaments of nhx1 nhx2 did not elongate and lacked the ability to dehisce and release pollen, resulting in a near lack of silique formation. Pollen viability and germination was not affected. Quantification of vacuolar pH and intravacuolar K(+) concentrations indicated that nhx1 nhx2 vacuoles were more acidic and accumulated only 30% of the wild-type K(+) concentration, highlighting the roles of NHX1 and NHX2 in mediating vacuolar K(+)/H(+) exchange. Growth under added Na(+), but not K(+), partly rescued the flower and growth phenotypes. Our results demonstrate the roles of NHX1 and NHX2 in regulating intravacuolar K(+) and pH, which are essential to cell expansion and flower development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Flores/crescimento & desenvolvimento , Trocadores de Sódio-Hidrogênio/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Germinação , Homeostase , Concentração de Íons de Hidrogênio , Mutagênese Insercional , Pólen/crescimento & desenvolvimento , Potássio/metabolismo , Trocadores de Sódio-Hidrogênio/genética
19.
Nat Microbiol ; 9(4): 1117-1129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503974

RESUMO

DNA-amplicon-based microbiota profiling can estimate species diversity and abundance but cannot resolve genetic differences within individuals of the same species. Here we report the development of modular bacterial tags (MoBacTags) encoding DNA barcodes that enable tracking of near-isogenic bacterial commensals in an array of complex microbiome communities. Chromosomally integrated DNA barcodes are then co-amplified with endogenous marker genes of the community by integrating corresponding primer binding sites into the barcode. We use this approach to assess the contributions of individual bacterial genes to Arabidopsis thaliana root microbiota establishment with synthetic communities that include MoBacTag-labelled strains of Pseudomonas capeferrum. Results show reduced root colonization for certain mutant strains with defects in gluconic-acid-mediated host immunosuppression, which would not be detected with traditional amplicon sequencing. Our work illustrates how MoBacTags can be applied to assess scaling of individual bacterial genetic determinants in the plant microbiota.


Assuntos
Arabidopsis , Microbiota , Humanos , Bactérias/genética , Microbiota/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Genes Bacterianos , Simbiose
20.
Plant J ; 69(2): 317-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21923744

RESUMO

Heterostylous species have two types of flowers, thrum and pin morphs, and these are controlled by a single diallelic locus designated the 'S locus'; fertilization between these two types of flowers is successful. The S gene and the molecular mechanism by which it operates remain to be uncovered, although heterostyly has been studied since the time of Darwin. We compared transcripts and proteins of the thrum and pin flowers of heterostylous flax (Linum grandiflorum) to characterize the molecular differences between them and to elucidate the molecular machinery of heterostyly. Twelve floral morph-related genes were eventually isolated by an integrated study of subtraction and 2D-PAGE analyses, and four genes, TSS1, LgAP1, LgMYB21 and LgSKS1, were predicted to be related to heterostyly. TSS1, a thrum style-specific gene, showed some features suitable for the S gene. Although its biological function is unclear, TSS1 was expressed only in the thrum style and is probably linked to the S locus. LgMYB21, another thrum style gene, would be involved in floral morphogenesis. LgMYB21 was highly expressed in the thrum style, which is shorter than the pin style, and its overexpression in Arabidopsis reduced pistil length. Furthermore, a comparison of transcript and protein accumulations showed no differences in the mRNA accumulation of some thrum-specific proteins, including LgSKS1, suggesting that these are regulated by floral morph-specific post-transcriptional regulation. The Linum S locus regulates not only S specificity but also many floral phenotypes. Dynamic regulation of transcripts and proteins would be necessary for the pleiotropic function of the Linum S locus.


Assuntos
Linho/genética , Flores/anatomia & histologia , Regulação da Expressão Gênica/genética , Genes de Plantas/genética , Polimorfismo Genético/genética , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Mapeamento Cromossômico , Sequência Conservada , DNA de Plantas/genética , Linho/anatomia & histologia , Flores/genética , Perfilação da Expressão Gênica , Loci Gênicos , Genótipo , Dados de Sequência Molecular , Especificidade de Órgãos , Fenótipo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Transcrição Gênica/fisiologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA