Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 128(1): 229-238, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583977

RESUMO

Abnormalities of auditory steady-state responses (ASSRs) and the effects of antipsychotic drugs on ASSRs have been investigated in patients with schizophrenia. It is presumed that drugs do not directly affect ASSRs because its abnormalities are associated with schizophrenia. Therefore, to investigate the direct effect of drugs on ASSRs, we established an ASSR evaluation system for common marmosets in a naïve state. Dopamine D1 receptor stimulation (SKF-81297, 2 mg/kg ip) significantly increased evoked power (EP) at 40 Hz. The phase locking factor (PLF) was increased significantly at 20, 30, 40, and 80 Hz. However, administration of a dopamine D1 receptor antagonist (SCH-39166, 0.3 mg/kg ip) resulted in a significant decrease in EP and PLF at 30 Hz. Dopamine D2 receptor stimulation (quinpirole, 1 mg/kg im) tended to increase EP and induced power (IP) at all frequencies, and a significant difference was observed at 30 Hz IP. There was no change in PLF at all frequencies. In addition, dopamine D2 receptor blockade (raclopride, 3 mg/kg ip) reduced EP and PLF at 30 Hz. Subcutaneous administration of the serotonin dopamine antagonist, risperidone (0.3 mg/kg), tended to increase IP and decrease PLF, but not significantly. Taken together, it is possible to compare the differences in the mode of action of drugs on ASSRs using naïve nonhuman primates.NEW & NOTEWORTHY We measured the effects of dopamine receptor-related compounds on ASSR in marmosets. D1 receptor stimulation increased the phase locking factor (PLF) and evoked power (EP), and reduced the induced power (IP). D2 receptor stimulation increased the IP. D1 and D2 receptor blockers reduced the PLF and EP at 30 Hz. Different modes of action of various drugs related to psychiatric disorders were evaluated by administering antipsychotic drugs to naïve marmosets.


Assuntos
Antipsicóticos , Callithrix , Estimulação Acústica/métodos , Animais , Antipsicóticos/farmacologia , Antagonistas de Dopamina/farmacologia , Potenciais Evocados Auditivos/fisiologia , Humanos , Receptores de Dopamina D1 , Receptores de Dopamina D2
2.
Chromosome Res ; 24(2): 161-73, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26667624

RESUMO

RbAp46/48, histone chaperone, is a family of evolutionarily conserved WD40 repeat-containing proteins, which are involved in various chromatin-metabolizing processes, but their in vivo functional relevance is yet unclear. In order to examine the biological role of pRbAp48 in chicken DT40 cells, we generated a tetracycline-inducible system for conditional RbAp48-knockout cells. Depletion of RbAp48 led to delayed S phase progression associated with slow DNA synthesis and nascent nucleosome formation, followed by accumulation in G2/M phase, finally leading to cell death. Prior to cell death, these cells exhibited aberrant mitosis such as highly condensed and abnormal chromosome alignment on the metaphase plate, leading to chromosome missegregation. Depletion of RbAp48 also caused dissociation of heterochromatin protein 1 (HP1) from pericentromeric heterochromatin. Furthermore, depletion of RbAp48 from cells led to elevated levels of acetylation and slightly decreased levels of methylation, specifically at Lys-9 residue of histone H3. These results suggest that RbAp48 plays an important role in chromosome stability for proper organization of heterochromatin structure through the regulation of epigenetic mark.


Assuntos
Sobrevivência Celular/genética , Galinhas/genética , Instabilidade Cromossômica/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Acetilação , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Fase G2/genética , Técnicas de Inativação de Genes , Heterocromatina/metabolismo , Histonas/metabolismo , Metilação , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fase S/genética
3.
Biochem Biophys Res Commun ; 467(3): 509-13, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456646

RESUMO

Histone acetyltransferase p300/CBP-associated factor (PCAF) belonging to GCN5 family regulates various epigenetic events for transcriptional regulation through alterations in the chromatin structure. During normal development of B cells, gene expressions of numerous transcription factors are strictly regulated by epigenetic mechanisms including histone acetylation and deacetylation to complete their development pathways. Here, by analyzing PCAF-deficient DT40 mutants, ΔPCAF, we report that PCAF takes part in transcriptional activation of B cell lymphoma-6 (Bcl-6) and Paired box gene 5 (Pax5), which are essential transcription factors for normal development of B cells. PCAF-deficiency caused drastic decrease in mRNA levels of Bcl-6 and Pax5, and remarkable increase in that of B lymphocyte-induced maturation protein-1 (Blimp-1). In addition, chromatin immunoprecipitation assay showed that PCAF-deficiency caused remarkable decrease in acetylation levels of both H3K9 and H3K14 residues within chromatin surrounding the 5'-flanking regions of Bcl-6 and Pax5 genes in vivo, suggesting that their gene expressions may be regulated by PCAF. These results revealed that PCAF is involved in transactivation of Bcl-6 and Pax5 genes, resulting in down-regulation of Blimp-1 gene expression, and plays a key role in epigenetic regulation of B cell development.


Assuntos
Linfócitos B/metabolismo , Fator de Transcrição PAX5/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Ativação Transcricional , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Linhagem Celular , Galinhas
4.
Biochem Biophys Res Commun ; 463(4): 870-5, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26086109

RESUMO

The endoplasmic reticulum (ER), a complex membrane structure, has important roles in all eukaryotic cells. Catastrophe of its functions would lead to ER stress that causes various diseases such as cancer, neurodegenerative diseases, diabetes and so on. Prolonged ER stress could trigger apoptosis via activation of various signal transduction pathways. To investigate physiological roles of histone acetyltransferase GCN5 in regulation of ER stress, we analyzed responses of homozygous GCN5-deficient DT40 mutants, ΔGCN5, against ER stress. GCN5-deficiency in DT40 caused drastic resistance against apoptosis induced by pharmacological ER stress agents (thapsigargin and tunicamycin). Pharmaceutical analysis using specific Bcl-2 inhibitors showed that the drastic resistance against prolonged ER stress-induced apoptosis is, in part, due to up-regulation of Bcl-2 gene expression in ΔGCN5. These data revealed that GCN5 is involved in regulation of prolonged ER stress-induced apoptosis through controlling Bcl-2 gene expression.


Assuntos
Apoptose , Retículo Endoplasmático/metabolismo , Genes bcl-2 , Histona Acetiltransferases/metabolismo , Regulação para Cima , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Galinhas , Retículo Endoplasmático/efeitos dos fármacos , Histona Acetiltransferases/genética , Tapsigargina/farmacologia
5.
Microbiol Immunol ; 59(7): 426-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26094714

RESUMO

The transcription factor paired box gene 5 (Pax5) is essential for B cell development. In this study, complementation analyses in Pax5-deficient DT40 cells showed that three Pax5 isoforms Pax5A, Pax5B and Pax5BΔEx8 (another spliced isoform of Pax5B lacking exon 8) exhibit distinct roles in transcriptional regulation of six B cell development-related genes (activation-induced cytidine deaminase, Aiolos, BTB and CNC homology 2, B cell lymphoma-6, early B cell factor 1, origin binding factor-1 genes), transcriptions of which are remarkably down-regulated by Pax5-deficiency. Moreover, ectopic expression study shows that these Pax5 isoforms may regulate themselves and each other at the transcriptional level.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição PAX5/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Animais , Linhagem Celular Transformada , Galinhas , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fator de Transcrição PAX5/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Transcrição Gênica
6.
Microbiol Immunol ; 59(4): 243-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644304

RESUMO

The histone acetyltransferase p300/CBP-associated factor (PCAF) catalyzes acetylation of core histones and plays important roles in epigenetics by altering the chromatin structure in vertebrates. In this study, PCAF-deficient DT40 mutants were analyzed and it was found that PCAF participates in regulation of secretory IgM heavy chain (H-chain) synthesis. Remarkably, PCAF-deficiency causes an increase in the amount of secretory IgM H-chain mRNA, but not in that of IgM light chain and membrane-bound IgM H-chain mRNAs, resulting in dramatic up-regulation of the amount of secretory IgM protein. These findings suggest that PCAF regulates soluble antibody production and is thus an effective suppressor of secretory IgM H-chain synthesis.


Assuntos
Regulação para Baixo , Imunoglobulina M/biossíntese , Células Precursoras de Linfócitos B/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Linhagem Celular , Galinhas , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/genética , Células Precursoras de Linfócitos B/enzimologia , Fatores de Transcrição de p300-CBP/genética
7.
J Biol Chem ; 287(47): 39842-9, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23033487

RESUMO

By UV-irradiation, cells are subjected to DNA damage followed by mutation, cell death and/or carcinogenesis. DNA repair systems such as nucleotide excision repair (NER) and translesion DNA synthesis (TLS) protect cells against UV-irradiation. To understand the role of histone acetyltransferase GCN5 in regulation of DNA repair, we studied the sensitivity of GCN5-deficient DT40, GCN5(-/-), to various DNA-damaging agents including UV-irradiation, and effects of GCN5-deficiency on the expression of NER- and TLS-related genes. After UV-irradiation, cell death and DNA fragmentation of GCN5(-/-) were appreciably accelerated as compared with those of DT40. Interestingly, GCN5(-/-) showed a remarkable sensitivity to only UV-irradiation but not to other DNA-damaging agents tested. Semiquantitative RT-PCR showed that transcription of DNA polymerase η (POLH) gene whose deficiency is responsible for a variant form of xeroderma pigmentosum was drastically down-regulated in GCN5(-/-) (to ∼25%). In addition, ectopic expression of human POLH in GCN5(-/-) dramatically reversed the sensitivity to UV-irradiation of GCN5(-/-) to almost the same level of wild type DT40. Moreover, chromatin immunoprecipitation assay revealed that GCN5 binds to the chicken POLH gene 5'-flanking region that contains a typical CpG island and acetylates Lys-9 of histone H3, but not Lys-14 in vivo. These data suggest that GCN5 takes part in transcription regulation of POLH gene through alterations in the chromatin structure by direct interaction with its 5'-flanking region, and protects vertebrate cells against UV-induced DNA damage via controlling POLH gene expression.


Assuntos
Fragmentação do DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação/efeitos da radiação , Animais , Morte Celular/genética , Morte Celular/efeitos da radiação , Linhagem Celular , Galinhas , Ilhas de CpG/genética , DNA/biossíntese , DNA/genética , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/genética , Histonas/genética , Histonas/metabolismo , Humanos , Ligação Proteica/genética , Ligação Proteica/efeitos da radiação , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação , Fatores de Transcrição de p300-CBP/genética
8.
J Immunol ; 186(5): 3015-22, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278346

RESUMO

The superoxide anion (O(2)(-))-generating system is an important mechanism of innate immune response against microbial infection in phagocytes and is involved in signal transduction mediated by various physiological and pathological signals in phagocytes and other cells, including B lymphocytes. The O(2)(-)-generating system is composed of five specific proteins: p22-phox, gp91-phox, p40-phox, p47-phox, p67-phox, and a small G protein, Rac. Little is known regarding epigenetic regulation of the genes constituting the O(2)(-)-generating system. In this study, by analyzing the GCN5 (one of most important histone acetyltransferases)-deficient DT40 cell line, we show that GCN5 deficiency causes loss of the O(2)(-)-generating activity. Interestingly, transcription of the gp91-phox gene was drastically downregulated (to ∼4%) in GCN5-deficient cells. To further study the involvement of GCN5 in transcriptional regulation of gp91-phox, we used in vitro differentiation system of U937 cells. When human monoblastic U937 cells were cultured in the presence of IFN-γ, transcription of gp91-phox was remarkably upregulated, and the cells were differentiated to macrophage-like cells that can produce O(2)(-). Chromatin immunoprecipitation assay using the U937 cells during cultivation with IFN-γ revealed not only that association of GCN5 with the gp91-phox gene promoter was significantly accelerated, but also that GCN5 preferentially elevated acetylation levels of H2BK16 and H3K9 surrounding the promoter. These results suggested that GCN5 regulates the O(2)(-)-generating system in leukocytes via controlling the gp91-phox gene expression as a supervisor. Our findings obtained in this study should be useful in understanding the molecular mechanisms involved in epigenetic regulation of the O(2)(-)-generating system in leukocytes.


Assuntos
Proteínas Aviárias/fisiologia , Regulação da Expressão Gênica/imunologia , Histona Acetiltransferases/fisiologia , Leucócitos/metabolismo , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Superóxidos/metabolismo , Fatores de Transcrição de p300-CBP/fisiologia , Acetilação , Animais , Apoptose/imunologia , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Linfócitos B/citologia , Linfócitos B/imunologia , Linhagem Celular , Galinhas , Regulação para Baixo/imunologia , Inibidores do Crescimento/deficiência , Inibidores do Crescimento/genética , Inibidores do Crescimento/fisiologia , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/enzimologia , Lisina/metabolismo , Glicoproteínas de Membrana/biossíntese , NADPH Oxidases/biossíntese , Regiões Promotoras Genéticas/imunologia , Superóxidos/antagonistas & inibidores , Células U937 , Regulação para Cima/imunologia
9.
J Biol Chem ; 286(35): 30504-30512, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757688

RESUMO

Ordered nucleosome disassembly and reassembly are required for eukaryotic DNA replication. The facilitates chromatin transcription (FACT) complex, a histone chaperone comprising Spt16 and SSRP1, is involved in DNA replication as well as transcription. FACT associates with the MCM helicase, which is involved in DNA replication initiation and elongation. Although the FACT-MCM complex is reported to regulate DNA replication initiation, its functional role in DNA replication elongation remains elusive. To elucidate the functional role of FACT in replication fork progression during DNA elongation in the cells, we generated and analyzed conditional SSRP1 gene knock-out chicken (Gallus gallus) DT40 cells. SSRP1-depleted cells ceased to grow and exhibited a delay in S-phase cell cycle progression, although SSRP1 depletion did not affect the level of chromatin-bound DNA polymerase α or nucleosome reassembly on daughter strands. The tracking length of newly synthesized DNA, but not origin firing, was reduced in SSRP1-depleted cells, suggesting that the S-phase cell cycle delay is mainly due to the inhibition of replication fork progression rather than to defects in the initiation of DNA replication in these cells. We discuss the mechanisms of how FACT promotes replication fork progression in the cells.


Assuntos
Cromatina/química , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/química , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Animais , Ciclo Celular , Galinhas , Epigênese Genética , Citometria de Fluxo/métodos , Histonas/química , Humanos , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Fase S
10.
Biochem Biophys Res Commun ; 422(4): 780-5, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22634309

RESUMO

The transcription factor, early B cell factor 1 (EBF1) with an atypical zinc-finger and helix-loop-helix motif, is essential for development and differentiation of lymphocytes. In mice, EBF1 is involved in the generation of pre-pro B cells (the first specified progenitors of B cells) from common lymphoid progenitors (CLPs) and transcription regulations of various genes involved in B cell-development, for instance, mb-1 and Pax5. During B lymphopoiesis, interestingly, EBF1 is detected throughout from CLPs to mature B cells. However, in immature B cells, the physiological role of EBF1 remains to be elucidated. Here, by analyzing EBF1-deficient DT40 cells, EBF1(-/-), generated by us, we show that EBF1-deficiency caused significant increases (to ∼800%) in both mRNA and protein levels of B lymphocyte-induced maturation protein-1 (Blimp-1), the master gene for plasma cell differentiation. In addition, both transcription and protein synthesis of Blimp-1 were remarkably down-regulated (to ∼20%) by re-expression (over-expression) of EBF1. Chromatin immunoprecipitation assay revealed that EBF1 binds to proximal 5'-upstream regions around two putative EBF1 binding motifs of the gene in vivo. These results suggest that EBF1 takes part in transcriptional regulations of the Blimp-1 gene in immature B cells, and may play a key role in B cell differentiation. This is the first report on a novel EBF1 function in immature B cells as a powerful repressor of Blimp-1 gene expression.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Sequências Hélice-Alça-Hélice , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Dedos de Zinco , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Galinhas , Imunoprecipitação da Cromatina , Regulação para Baixo , Dados de Sequência Molecular , Regulação para Cima
11.
Nucleic Acids Res ; 38(11): 3533-45, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20156997

RESUMO

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes, and chromatin fibers are thought to be stabilized by linker histones of the H1 type. Higher eukaryotes express multiple variants of histone H1; chickens possess six H1 variants. Here, we generated and analyzed the phenotype of a complete deletion of histone H1 genes in chicken cells. The H1-null cells showed decreased global nucleosome spacing, expanded nuclear volumes, and increased chromosome aberration rates, although proper mitotic chromatin structure appeared to be maintained. Expression array analysis revealed that the transcription of multiple genes was affected and was mostly downregulated in histone H1-deficient cells. This report describes the first histone H1 complete knockout cells in vertebrates and suggests that linker histone H1, while not required for mitotic chromatin condensation, plays important roles in nucleosome spacing and interphase chromatin compaction and acts as a global transcription regulator.


Assuntos
Histonas/fisiologia , Nucleossomos/química , Animais , Ciclo Celular , Linhagem Celular , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Cromatina/ultraestrutura , Aberrações Cromossômicas , Histonas/genética , Interfase/genética , Mutação , Transcrição Gênica
12.
Pharmacology ; 90(3-4): 133-45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22847175

RESUMO

OBJECTIVES: To investigate the correlation between in vitro killing activity and in vivo efficacy of micafungin (MCFG) and liposomal amphotericin B (L-AMB) against Candida tropicalis in a neutropenic murine lethal infection model. METHODS: Candida albicans (one strain) and C. tropicalis (three strains) were tested in time-kill studies. Cyclophosphamide-treated mice were inoculated intravenously with each strain. One day after inoculation, antifungals were administered intravenously once daily for 1 or 3 days. RESULTS: MCFG exhibited fungicidal activity against C. albicans ATCC 90029 and C. tropicalis SP-20142, and fungistatic activity against C. tropicalis ATCC 42678 and SP-20047. The ED(50)s (dosage that results in 50% survival) of MCFG for C. tropicalis ATCC 42678 and SP-20047 (4.1-50 mg/kg) were higher than those for other strains (1.6-12 mg/kg). A 1-day course of MCFG was not effective against C. tropicalis ATCC 42678 and SP-20047 at the clinical dose (5 mg/kg), which achieved an AUC level almost equal to that of 100 mg in humans, whereas a 3-day course of 5 mg/kg MCFG was efficacious against all strains. In contrast, L-AMB showed fungicidal activity against all strains tested and the ED(50)s of L-AMB were 0.08-0.65 mg/kg. In both treatment regimens, the minimum effective doses of L-AMB (≤0.5 mg/kg) were less than the clinical dosage (≤5 mg/kg). CONCLUSIONS: The in vivo efficacy of MCFG and L-AMB showed a correlation with the in vitro killing activity. At the clinical dose, L-AMB exerted anti-C. tropicalis activity within a shorter treatment period than MCFG.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida tropicalis/efeitos dos fármacos , Candidíase/tratamento farmacológico , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Neutropenia/complicações , Anfotericina B/farmacocinética , Animais , Área Sob a Curva , Modelos Animais de Doenças , Equinocandinas/farmacocinética , Lipopeptídeos/farmacocinética , Masculino , Micafungina , Camundongos , Testes de Sensibilidade Microbiana
13.
Biochem Biophys Res Commun ; 405(4): 657-61, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21281601

RESUMO

Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2).


Assuntos
Linfócitos B/fisiologia , Regulação Enzimológica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Fatores de Transcrição de p300-CBP/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Apoptose , Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Linhagem Celular , Galinhas , Imunoprecipitação da Cromatina , Ativação Enzimática , Peróxido de Hidrogênio/farmacologia , Mutação , Quinase Syk , Fatores de Transcrição de p300-CBP/genética
14.
Nat Cell Biol ; 6(8): 784-91, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15247924

RESUMO

RNA interference is an evolutionarily conserved gene-silencing pathway in which the nuclease Dicer cleaves double-stranded RNA into small interfering RNAs. The biological function of the RNAi-related pathway in vertebrate cells is not fully understood. Here, we report the generation of a conditional loss-of-function Dicer mutant in a chicken-human hybrid DT40 cell line that contains human chromosome 21. We show that loss of Dicer results in cell death with the accumulation of abnormal mitotic cells that show premature sister chromatid separation. Aberrant accumulation of transcripts from alpha-satellite sequences, which consist of human centromeric repeat DNAs, was detected in Dicer-deficient cells. Immunocytochemical analysis revealed abnormalities in the localization of two heterochromatin proteins, Rad21 cohesin protein and BubR1 checkpoint protein, but the localization of core kinetochore proteins such as centromere protein (CENP)-A and -C was normal. We conclude that Dicer-related RNA interference machinery is involved in the formation of the heterochromatin structure in higher vertebrate cells.


Assuntos
Endorribonucleases/genética , Endorribonucleases/fisiologia , Heterocromatina/química , Heterocromatina/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular/genética , Linhagem Celular , Sobrevivência Celular , Centrômero/química , Galinhas , Cromossomos Humanos Par 21 , Proteínas de Ligação a DNA , Endorribonucleases/deficiência , Inativação Gênica , Heterocromatina/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Interferência de RNA , Mapeamento por Restrição , Transgenes
15.
Biochim Biophys Acta ; 1793(7): 1304-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19427336

RESUMO

Antigen binding to B cell receptor (BCR) of pre-mature B lymphocytes leads to their apoptosis, while binding to BCR of mature B lymphocytes induces their activation and proliferation. The former binding is believed to be a mechanism so as to exclude B cell clones leading to protection from auto-immune diseases. Cross-linking of BCR of pre-mature B cells, including chicken DT40 cells, with anti-immunoglobulin antibody induces their apoptosis. The PMA/ionomycin treatments, which mimic BCR stimulation, are used to study intracellular signal transduction of B lymphocytes. Here, by analyzing the Aiolos-deficient DT40 cell line, Aiolos(-/-), we reveal that the lack of Aiolos accelerates apoptosis of DT40 cells mediated by BCR signaling. Moreover, the Aiolos-deficiency and BCR signaling cooperatively control this apoptosis through dramatically elevated cytochrome c release from mitochondria to cytosol and elevated caspase (caspase-3, 8 and 9) activities, resulting in drastically diminished amounts of ICAD followed by increased DNA fragmentation. Re-expression study reveals that the shorter isoform of Aiolos (Aio-2) controls PMA/ionomycin-mediated apoptosis via up-regulation and down-regulation of the PKCdelta and bak genes, respectively. These findings could be a powerful trigger to resolve molecular mechanisms of negative selection of B lymphocytes and also auto-immune diseases.


Assuntos
Apoptose , Citocromos c/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transativadores/fisiologia , Animais , Caspases/metabolismo , Embrião de Galinha , Citometria de Fluxo , Fator de Transcrição Ikaros , Immunoblotting , Ionomicina/farmacologia , Ionóforos/farmacologia , Camundongos , Camundongos Knockout , Células Precursoras de Linfócitos B/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Biochem Biophys Res Commun ; 395(1): 61-5, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20346917

RESUMO

The membrane bound cytochrome b558 composed of large gp91-phox and small p22-phox subunits, and cytosolic proteins p40-, p47- and p67-phox are important components of superoxide (O(2)(-))-generating system in phagocytes and B lymphocytes. A lack of this system in phagocytes is known to cause serious life-threatening infections. Here, we describe that curcumin, a polyphenol responsible for the yellow color of curry spice turmeric, dramatically activates the O(2)(-)-generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and curcumin, the O(2)(-)-generating activity increased more than 4-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and curcumin slightly enhanced gene expressions of the five components compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and curcumin caused remarkable accumulation of protein levels of p47-phox (to 7-fold) and p67-phox (to 4-fold) compared with those of the RA-treatment alone. These results suggested that curcumin dramatically enhances RA-induced O(2)(-)-generating activity via accumulation of cytosolic p47-phox and p67-phox proteins in U937 cells. Therefore, it should have the potential as an effective modifier in therapy of leukemia and/or as an immunopotentiator.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antineoplásicos/farmacologia , Curcumina/farmacologia , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Superóxidos/metabolismo , Tretinoína/farmacologia , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/metabolismo , Fagócitos/efeitos dos fármacos
17.
Mol Cell Biol ; 27(2): 554-67, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17101790

RESUMO

The apoptotic process is accompanied by major changes in chromatin structure and gene expression. The apoptotic genetic program is progressively set up with the inhibition of antiapoptotic genes and the activation of proapoptotic ones. Here, we show that the histone deacetylase 3 (HDAC-3), which is a known co-repressor of many proapoptotic genes, is subjected to proteolytic cleavage during apoptosis in a cell type- and species-independent manner. This cleavage is caspase dependent and leads to the loss of the C-terminal part of HDAC-3. The cleaved form of HDAC-3 accumulates in the cytoplasm. Furthermore, we found that forced nuclear localization of HDAC-3 decreases the efficiency of apoptosis induction, indicating that HDAC-3 cytoplasmic relocalization is important for the apoptotic process. Finally, we observed that HDAC-3 cleavage allowed increased histone acetylation and transcriptional activation on a proapoptotic HDAC-3-target gene, the Fas-encoding gene. Altogether, our results thus indicate that HDAC-3 cleavage is crucial for efficient apoptosis induction because it allows the activation of some proapoptotic genes during apoptosis progression.


Assuntos
Apoptose , Histona Desacetilases/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Caspases/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Histonas/metabolismo , Humanos , Células Jurkat , Transporte Proteico , Ativação Transcricional , Receptor fas/metabolismo
18.
Mol Biol Cell ; 18(1): 129-41, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17065558

RESUMO

Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-gamma are required for cell viability. These observations highlighted the essential role of CAF-1-dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Mitose , Nucleossomos/metabolismo , Vertebrados/metabolismo , Animais , Sobrevivência Celular , Centrossomo/metabolismo , Quinase 1 do Ponto de Checagem , Galinhas , Fator 1 de Modelagem da Cromatina , Proteínas Cromossômicas não Histona/deficiência , Proteínas de Ligação a DNA/deficiência , Ativação Enzimática , Marcação de Genes , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Subunidades Proteicas/metabolismo , Fase S , Fuso Acromático/metabolismo , Fatores de Transcrição
19.
DNA Repair (Amst) ; 6(11): 1584-95, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17613284

RESUMO

In Saccharomyces cerevisiae, the linker histone HHO1 is involved in DNA repair. In higher eukaryotes, multiple variants of linker histone H1 exist but their involvement in the DNA damage response is unknown. To address this issue, we examined sensitivity to genotoxic agents in chicken DT40 cells lacking specific H1 variants. Among the six H1 variant mutants, only H1R(-/-) DT40 cells exhibited increased sensitivity to the alkylating agent methyl-methanesulfonate (MMS). The MMS sensitivity of H1R(-/-) cells was not enhanced by inactivation of Rad54. H1R(-/-) DT40 cells also exhibited: (i) a reduction in gene targeting efficiencies, (ii) impaired sister chromatid exchange, and (iii) an accumulation of IR-induced chromosomal aberrations at the G2 phase, all of which indicate the involvement of H1R in the Rad54-mediated homologous recombination (HR) pathway. The mobility of H1R but not H1L in the nucleus decreased after MMS treatment and the repair of double-stranded breaks generated by I-SceI was unaffected in H1R(-/-) cells, suggesting that H1R integrates into HR-mediated repair pathways at the chromosome structure level. Together, these findings provide the first genetic evidence that a specific H1 variant plays a unique and important role in the DNA damage response in vertebrates.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Variação Genética , Histonas/fisiologia , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Galinhas , Histonas/genética , Histonas/metabolismo , Metanossulfonato de Metila/farmacologia , Recombinação Genética , Troca de Cromátide Irmã , Fatores de Tempo
20.
DNA Repair (Amst) ; 6(3): 280-92, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17123873

RESUMO

One of the earliest events in the signal transduction cascade that initiates a DNA damage checkpoint is the phosphorylation on serine 139 of histone H2AX (gammaH2AX) at DNA double-strand breaks (DSBs). However, the role of gammaH2AX in DNA repair is poorly understood. To address this question, we generated chicken DT40 cells carrying a serine to alanine mutation at position 139 of H2AX (H2AX(-/S139A)) and examined their DNA repair capacity. H2AX(-/S139A) cells exhibited defective homologous recombinational repair (HR) as manifested by delayed Rad51 focus formation following ionizing radiation (IR) and hypersensitivity to the topoisomerase I inhibitor, camptothecin (CPT), which causes DSBs at replication blockage. Deletion of the Rad51 paralog gene, XRCC3, also delays Rad51 focus formation. To test the interaction of Xrcc3 and gammaH2AX, we disrupted XRCC3 in H2AX(-/S139A) cells. XRCC3(-/-)/H2AX(-/S139A) mutants were not viable, although this synthetic lethality was reversed by inserting a transgene that conditionally expresses wild-type H2AX. Upon repression of the wild-type H2AX transgene, XRCC3(-/-)/H2AX(-/S139A) cells failed to form Rad51 foci and exhibited markedly increased levels of chromosomal aberrations after CPT treatment. These results indicate that H2AX and XRCC3 act in separate arms of a branched pathway to facilitate Rad51 assembly.


Assuntos
Proteínas Aviárias/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Histonas/fisiologia , Rad51 Recombinase/metabolismo , Recombinação Genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Camptotecina/farmacologia , Células Cultivadas , Galinhas , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/farmacologia , Raios gama , Instabilidade Genômica , Histonas/genética , Modelos Genéticos , Rad51 Recombinase/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA