Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 628(8008): 596-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509371

RESUMO

Motor neurons are the final common pathway1 through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster. Counterintuitively, we find that activity in a single motor neuron rotates the head in different directions, depending on the starting posture of the head, such that the head converges towards a pose determined by the identity of the stimulated motor neuron. A feedback model predicts that this convergent behaviour results from motor neuron drive interacting with proprioceptive feedback. We identify and genetically2 suppress a single class of proprioceptive neuron3 that changes the motor neuron-induced convergence as predicted by the feedback model. These data suggest a framework for how the brain controls movements: instead of directly generating movement in a given direction by activating a fixed set of motor neurons, the brain controls movements by adding bias to a continuing proprioceptive-motor loop.


Assuntos
Drosophila melanogaster , Neurônios Motores , Movimento , Postura , Propriocepção , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Retroalimentação Fisiológica/fisiologia , Cabeça/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Movimento/fisiologia , Postura/fisiologia , Propriocepção/genética , Propriocepção/fisiologia , Masculino
2.
Nature ; 613(7944): 534-542, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599984

RESUMO

To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.


Assuntos
Comportamento Animal , Drosophila , Neurônios , Desempenho Psicomotor , Sinapses , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila/anatomia & histologia , Drosophila/citologia , Drosophila/fisiologia , Neurônios/fisiologia , Campos Visuais/fisiologia , Sinapses/metabolismo , Axônios , Dendritos , Reação de Fuga
4.
Cell Tissue Res ; 374(3): 497-515, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30078100

RESUMO

Sex pheromones orient male moths toward conspecific female moths; the presence of visual information modulates this behavior. In the current study, we explore candidate neuronal pathways for the interaction between vision and the locomotor signal for pheromone orientation. We describe the connectivity between visual neuropils and brain premotor centers, the posterior slope (PS) and the lateral accessory lobe (LAL), in the silkmoth Bombyx mori. Using a single-cell labeling technique, we analyze visual projection neurons supplying these areas. Neurons from both the medulla and lobula complex projected to the PS but only the neurons originating in the lobula complex had additional processes to the LAL. Further, we identified populations of putative feedback neurons from the premotor centers to the optic lobe. Neurons originating in the PS were likely to project to the medulla, whereas those originating in the LAL were likely to project to the lobula complex. The anatomical study contributes to further understanding of integration of visual information on the locomotor control in the insect brain.


Assuntos
Bombyx/anatomia & histologia , Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Neurônios/citologia , Vias Visuais/anatomia & histologia , Animais , Retroalimentação , Lobo Óptico de Animais não Mamíferos/anatomia & histologia
5.
Proc Natl Acad Sci U S A ; 110(38): 15455-60, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24006366

RESUMO

The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs' responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness.


Assuntos
Bombyx/fisiologia , Interneurônios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Atrativos Sexuais/metabolismo , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Primers do DNA/genética , Vetores Genéticos , Luz , Masculino , Neurônios Receptores Olfatórios/metabolismo , Optogenética , Rodopsina/genética , Rodopsina/fisiologia , Limiar Sensorial/fisiologia , Fatores de Tempo
6.
J Neurosci ; 34(50): 16581-93, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505311

RESUMO

Animals need to discriminate differences in spatiotemporally distributed sensory signals in terms of quality as well as quantity for generating adaptive behavior. Olfactory signals characterized by odor identity and concentration are intermittently distributed in the environment. From these intervals of stimulation, animals process odorant concentration to localize partners or food sources. Although concentration-response characteristics in olfactory neurons have traditionally been investigated using single stimulus pulses, their behavior under intermittent stimulus regimens remains largely elusive. Using the silkmoth (Bombyx mori) pheromone processing system, a simple and behaviorally well-defined model for olfaction, we investigated the neuronal representation of odorant concentration upon intermittent stimulation in the naturally occurring range. To the first stimulus in a series, the responses of antennal lobe (AL) projection neurons (PNs) showed a concentration dependence as previously shown in many olfactory systems. However, PN response amplitudes dynamically changed upon exposure to intermittent stimuli of the same odorant concentration and settled to a constant, largely concentration-independent level. As a result, PN responses emphasized odorant concentration changes rather than encoding absolute concentration in pulse trains of stimuli. Olfactory receptor neurons did not contribute to this response transformation which was due to long-lasting inhibition affecting PNs in the AL. Simulations confirmed that inhibition also provides advantages when stimuli have naturalistic properties. The primary olfactory center thus functions as an odorant concentration differentiator to efficiently detect concentration changes, thereby improving odorant source orientation over a wide concentration range.


Assuntos
Odorantes , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Bombyx , Relação Dose-Resposta a Droga , Álcoois Graxos/farmacologia , Feminino , Masculino , Condutos Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Olfato/efeitos dos fármacos
7.
J Neurophysiol ; 114(5): 3002-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26378200

RESUMO

Neurons in the silkmoth antennal lobe (AL) are well characterized in terms of their morphology and odor-evoked firing activity. However, their intrinsic electrical properties including voltage-gated ionic currents and synaptic connectivity remain unclear. To address this, whole cell current- and voltage-clamp recordings were made from second-order projection neurons (PNs) and two morphological types of local interneurons (LNs) in the silkmoth AL. The two morphological types of LNs exhibited distinct physiological properties. One morphological type of LN showed a spiking response with a voltage-gated sodium channel gene expression, whereas the other type of LN was nonspiking without a voltage-gated sodium channel gene expression. Voltage-clamp experiments also revealed that both of two types of LNs as well as PNs possessed two types of voltage-gated potassium channels and calcium channels. In dual whole cell recordings of spiking LNs and PNs, activation of the PN elicited depolarization responses in the paired spiking LN, whereas activation of the spiking LN induced no substantial responses in the paired PN. However, simultaneous recording of a nonspiking LN and a PN showed that activation of the nonspiking LN induced hyperpolarization responses in the PN. We also observed bidirectional synaptic transmission via both chemical and electrical coupling in the pairs of spiking LNs. Thus our results indicate that there were two distinct types of LNs in the silkmoth AL, and their functional connectivity to PNs was substantially different. We propose distinct functional roles for these two different types of LNs in shaping odor-evoked firing activity in PNs.


Assuntos
Bombyx/fisiologia , Interneurônios/fisiologia , Potenciais da Membrana , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Animais , Bombyx/citologia , Bombyx/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/fisiologia
8.
J Neurosci ; 33(3): 987-1001, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325237

RESUMO

Correlated spiking activity prevails in immature cortical networks and is believed to contribute to neuronal circuit maturation; however, its spatiotemporal organization is not fully understood. Using wide-field calcium imaging from acute whole-brain slices of rat pups on postnatal days 1-6, we found that correlated spikes were initiated in the anterior part of the lateral entorhinal cortex and propagated anteriorly to the frontal cortex and posteriorly to the medial entorhinal cortex, forming traveling waves that engaged almost the entire cortex. The waves were blocked by ionotropic glutamatergic receptor antagonists but not by GABAergic receptor antagonists. During wave events, glutamatergic and GABAergic synaptic inputs were balanced and induced UP state-like depolarization. Magnified monitoring with cellular resolution revealed that the layer III neurons were first activated when the waves were initiated. Consistent with this finding, layer III contained a larger number of neurons that were autonomously active, even under a blockade of synaptic transmission. During wave propagation, the layer III neurons constituted a leading front of the wave. The waves did not enter the parasubiculum; however, in some cases, they were reflected at the parasubicular border and propagated back in the opposite direction. During this reflection process, the layer III neurons in the medial entorhinal cortex maintained persistent activity. Thus, our data emphasize the role of layer III in early network behaviors and provide insight into the circuit mechanisms through which cerebral cortical networks maturate.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ondas Encefálicas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Carbenoxolona/farmacologia , Córtex Cerebral/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Ratos , Transmissão Sináptica/efeitos dos fármacos
9.
Biol Lett ; 10(4): 20140096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759369

RESUMO

We investigated the neuroanatomy of the macroglomerular complex (MGC), which is involved in sex pheromone processing, in five species in the subfamily Bombycinae, including Ernolatia moorei, Trilocha varians, Rondotia menciana, Bombyx mandarina and Bombyx mori. The glomerulus located at the dorsal-most part of the olfactory centre shows the largest volume in moth species examined to date. Such normal glomerular organization has been observed in E. moorei and T. varians, which use a two-component mixture and includes the compound bombykal as a mating signal. By contrast, the other three species, which use another component as a single attractant, exhibited a modified arrangement of the MGC. This correlation between pheromone usage and neural organization may be useful for understanding the process of speciation.


Assuntos
Antenas de Artrópodes/anatomia & histologia , Mariposas/anatomia & histologia , Atrativos Sexuais/metabolismo , Animais , Antenas de Artrópodes/fisiologia , Mariposas/metabolismo , Mariposas/fisiologia , Comportamento Sexual Animal , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 108(44): 18038-43, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22006327

RESUMO

In the sex-pheromone communication systems of moths, odorant receptor (Or) specificity as well as higher olfactory information processing in males should be finely tuned to the pheromone of conspecific females. Accordingly, male sex-pheromone preference should have diversified along with the diversification of female sex pheromones; however, the genetic mechanisms that facilitated the diversification of male preference are not well understood. Here, we explored the mechanisms involved in a drastic shift in sex-pheromone preference in the silkmoth Bombyx mori using spli mutants in which the genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted or its expression is repressed. B. mori females secrete an ∼11:1 mixture of bombykol and bombykal. Bombykol alone elicits full male courtship behavior, whereas bombykal alone shows no apparent activity. In the spli mutants, the behavioral responsiveness of males to bombykol was markedly reduced, whereas bombykal alone evoked full courtship behavior. The reduced response of spli males to bombykol was explained by the paucity of bombykol receptors on the male antennae. It was also found that, in the spli males, neurons projecting into the toroid, a compartment in the brain where bombykol receptor neurons normally project, responded strongly to bombykal. The present study highlights a POU domain transcription factor, Bmacj6, which may have caused a shift of sex-pheromone preference in B. mori through Or gene choice and/or axon targeting.


Assuntos
Bombyx/metabolismo , Atrativos Sexuais , Fatores Sexuais , Comportamento Sexual Animal , Fatores de Transcrição/metabolismo , Alelos , Animais , Bombyx/genética , Bombyx/fisiologia , Feminino , Masculino , Dados de Sequência Molecular , Odorantes
11.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895426

RESUMO

In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.

12.
Artigo em Inglês | MEDLINE | ID: mdl-23749329

RESUMO

To elucidate the dynamic information processing in a brain underlying adaptive behavior, it is necessary to understand the behavior and corresponding neural activities. This requires animals which have clear relationships between behavior and corresponding neural activities. Insects are precisely such animals and one of the adaptive behaviors of insects is high-accuracy odor source orientation. The most direct way to know the relationships between neural activity and behavior is by recording neural activities in a brain from freely behaving insects. There is also a method to give stimuli mimicking the natural environment to tethered insects allowing insects to walk or fly at the same position. In addition to these methods an 'insect-machine hybrid system' is proposed, which is another experimental system meeting the conditions necessary for approaching the dynamic processing in the brain of insects for generating adaptive behavior. This insect-machine hybrid system is an experimental system which has a mobile robot as its body. The robot is controlled by the insect through its behavior or the neural activities recorded from the brain. As we can arbitrarily control the motor output of the robot, we can intervene at the relationship between the insect and the environmental conditions.


Assuntos
Bombyx , Encéfalo/citologia , Movimento/efeitos dos fármacos , Neurônios/fisiologia , Feromônios/farmacologia , Integração de Sistemas , Adaptação Fisiológica/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Modelos Biológicos , Movimento/fisiologia , Neurônios/efeitos dos fármacos , Odorantes , Robótica/instrumentação , Robótica/métodos
13.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398009

RESUMO

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.

14.
Elife ; 122023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36820523

RESUMO

Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.


Assuntos
Proteínas de Drosophila , Neurociências , Animais , Drosophila/metabolismo , Neurônios/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sistema Nervoso Central/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-22227850

RESUMO

Odor source localization is an important animal behavior. Male moths locate mates by tracking sex pheromone emitted by conspecific females. During this type of behavior, males exhibit a combination of upwind surge and zigzagging flight. Similarly, the male walking moth Bombyx mori responds to transient pheromone exposure with a surge in movement, followed by sustained zigzagging walking. The initial surge direction is known to be influenced by the pheromone input pattern. Here, we identified the sensory input patterns that determine the initial walking direction of males. We first quantified the stimulus by measuring electroantennogram values, which were used as a reference for subsequent tests. We used a brief stimulus pulse to examine the relationship between sensory stimulus patterns and the turning direction of initial surge. We found that the difference in input timing and intensity between left and right antennae affected the walking direction, indicating that B. mori integrate bilateral pheromone information during orientation behavior. When we tested pheromone stimulation for longer periods, turning behavior was suppressed, which was induced by stimulus cessation. This study contributes toward understanding efficient strategies for odor-source localization that is utilized by walking insects.


Assuntos
Bombyx/fisiologia , Lateralidade Funcional/fisiologia , Orientação/fisiologia , Feromônios/farmacologia , Caminhada/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos , Álcoois Graxos/farmacologia , Feminino , Masculino , Odorantes , Estimulação Física , Estimulação Química , Fatores de Tempo , Vento
16.
Cereb Cortex ; 21(8): 1889-900, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21212170

RESUMO

Astrocytes exhibit spontaneous calcium fluctuations. These activities have not been captured by large-scale recordings, and little is known about their collective dynamics. In situ and in vivo calcium imaging from hundreds (up to 2195) of astrocytes in the mouse hippocampus and neocortex revealed that neighboring astrocytes spontaneously exhibited synchronous calcium elevations and formed locally correlated cell groups ("clusters" of 2 to 5 astrocytes within a diameter of 81 ± 45 µm). Cluster activity accounted for approximately 10% of the astrocytic calcium events, and 44% of the clusters appeared repetitively during our observation period of 60 min. Astrocytic clusters emerged through metabotropic glutamate receptor activation, independently of neuronal activity. Neurons were depolarized by 1.5 mV when clusters appeared near their dendrites. This depolarization was mediated by non-N-methyl-D-aspartate (NMDA) glutamate receptor channels and was replicated by calcium uncaging activation of multiple astrocytes. Importantly, the activation of single astrocytes alone could not depolarize neurons but readily elicited NMDA-dependent slow inward currents in depolarized neurons. Thus, these novel ensemble dynamics of astrocytes, which cannot be captured by conventional small-scale imaging techniques, play a different role in neuronal modulation than does the sporadic activity of single astrocytes.


Assuntos
Astrócitos/fisiologia , Agregação Celular/fisiologia , Sincronização Cortical/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Neocórtex/citologia , Neocórtex/metabolismo , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/fisiologia
17.
Curr Biol ; 32(5): 1189-1196.e6, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35090590

RESUMO

Similar to many insect species, Drosophila melanogaster is capable of maintaining a stable flight trajectory for periods lasting up to several hours.1,2 Because aerodynamic torque is roughly proportional to the fifth power of wing length,3 even small asymmetries in wing size require the maintenance of subtle bilateral differences in flapping motion to maintain a stable path. Flies can even fly straight after losing half of a wing, a feat they accomplish via very large, sustained kinematic changes to both the damaged and intact wings.4 Thus, the neural network responsible for stable flight must be capable of sustaining fine-scaled control over wing motion across a large dynamic range. In this study, we describe an unusual type of descending neuron (DNg02) that projects directly from visual output regions of the brain to the dorsal flight neuropil of the ventral nerve cord. Unlike many descending neurons, which exist as single bilateral pairs with unique morphology, there is a population of at least 15 DNg02 cell pairs with nearly identical shape. By optogenetically activating different numbers of DNg02 cells, we demonstrate that these neurons regulate wingbeat amplitude over a wide dynamic range via a population code. Using two-photon functional imaging, we show that DNg02 cells are responsive to visual motion during flight in a manner that would make them well suited to continuously regulate bilateral changes in wing kinematics. Collectively, we have identified a critical set of descending neurons that provides the sensitivity and dynamic range required for flight control.


Assuntos
Drosophila , Voo Animal , Animais , Fenômenos Biomecânicos , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Neurônios , Asas de Animais/fisiologia
18.
Neuron ; 107(6): 1071-1079.e2, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32931755

RESUMO

Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.


Assuntos
Drosophila melanogaster/citologia , Gânglios dos Invertebrados/citologia , Rede Nervosa/citologia , Neurônios/classificação , Terminologia como Assunto , Animais , Linhagem da Célula , Drosophila melanogaster/fisiologia , Gânglios dos Invertebrados/fisiologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia
19.
Cell Tissue Res ; 336(1): 119-36, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19225812

RESUMO

We investigated the anatomical organization of glomeruli in the antennal lobes (ALs) of male silkmoths. We reconstructed 10 different ALs and established an identification procedure for individual glomeruli by using size, shape, and position relative to anatomical landmarks. Quantitative analysis of these morphological characteristics supported the validity of our identification strategy. The glomerular organization of the ALs was roughly conserved between different ALs. However, we found individual variations that were reproducibly observed. The combination of a digital atlas with other experimental techniques, such as electrophysiology, optical imaging, and genetics, should facilitate a more in-depth analysis of sensory information processing in silkmoth ALs.


Assuntos
Bombyx/anatomia & histologia , Bombyx/citologia , Encéfalo/citologia , Gânglios dos Invertebrados/citologia , Condutos Olfatórios , Animais , Encéfalo/anatomia & histologia , Simulação por Computador , Masculino , Modelos Biológicos , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/citologia
20.
Int J Neurosci ; 119(2): 214-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19125375

RESUMO

Loading neurons with membrane permeable Ca2+ indicators is a core experimental procedure in functional multineuron Ca2+ imaging (fMCI), an optical technique for monitoring multiple neuronal activities. Although fMCI has been applied to several brain networks, including cerebral cortex, hippocampus, and cerebellum, no studies have systematically addressed the dye-loading efficiency in different brain regions. Here, we describe the stainability of Oregon Green 488 BAPTA-1AM in mouse acute brain slice preparations. The data are suggestive of the potential usability of fMCI in many brain regions, including olfactory bulb, thalamus, dentate gyrus, habenular nucleus, and pons.


Assuntos
Compostos de Anilina/química , Encéfalo/metabolismo , Sinalização do Cálcio/fisiologia , Fluoresceínas/química , Neuroquímica/métodos , Neurociências/métodos , Coloração e Rotulagem/métodos , Acetatos/química , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/anatomia & histologia , Cálcio/metabolismo , Corantes Fluorescentes/química , Indicadores e Reagentes/química , Camundongos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA