Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1194-200, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948920

RESUMO

The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.


Assuntos
Aminoacil-tRNA Sintetases/química , Giardia lamblia/química , Modelos Moleculares , Estrutura Terciária de Proteína
2.
Antimicrob Agents Chemother ; 55(5): 1982-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21282428

RESUMO

Human African trypanosomiasis continues to be an important public health threat in extensive regions of sub-Saharan Africa. Treatment options for infected patients are unsatisfactory due to toxicity, difficult administration regimes, and poor efficacy of available drugs. The aminoacyl-tRNA synthetases were selected as attractive drug targets due to their essential roles in protein synthesis and cell survival. Comparative sequence analysis disclosed differences between the trypanosome and mammalian methionyl-tRNA synthetases (MetRSs) that suggested opportunities for selective inhibition using drug-like molecules. Experiments using RNA interference on the single MetRS of Trypanosoma brucei demonstrated that this gene product was essential for normal cell growth. Small molecules (diaryl diamines) similar to those shown to have potent activity on prokaryotic MetRS enzymes were synthesized and observed to have inhibitory activity on the T. brucei MetRS (50% inhibitory concentration, <50 nM) and on bloodstream forms of T. brucei cultures (50% effective concentration, as low as 4 nM). Twenty-one compounds had a close correlation between enzyme binding/inhibition and T. brucei growth inhibition, indicating that they were likely to be acting on the intended target. The compounds had minimal effects on mammalian cell growth at 20 µM, demonstrating a wide therapeutic index. The most potent compound was tested in the murine model of trypanosomiasis and demonstrated profound parasite suppression and delayed mortality. A homology model of the T. brucei MetRS based on other MetRS structures was used to model binding of the lead diaryl diamine compounds. Future studies will focus on improving the pharmacological properties of the MetRS inhibitors.


Assuntos
Metionina tRNA Ligase/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Northern Blotting , Proliferação de Células/efeitos dos fármacos , Diaminas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Interferência de RNA , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/enzimologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-21904041

RESUMO

Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies.


Assuntos
Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/isolamento & purificação , Expressão Gênica , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1129-36, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21904062

RESUMO

Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H(2)AsO(4)(-)), a compound that is toxic to bacteria, to arsenite ion (AsO(2)(-)), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein's major biological function then disabling the cell's ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed ß-sheet flanked by two α-helices on one side and an α-helical bundle. The α/ß domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with (15)N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX(3)CX(3)R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins.


Assuntos
Proteínas de Bactérias/química , Brucella melitensis/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
5.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1148-53, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21904065

RESUMO

Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains, there is an urgent need to develop new antituberculosis strategies to prevent TB epidemics in the industrial world. Among the potential new drug targets are two small nonheme iron-binding proteins, rubredoxin A (Rv3251c) and rubredoxin B (Rv3250c), which are believed to play a role in electron-transfer processes. Here, the solution structure and biophysical properties of one of these two proteins, rubredoxin B (Mt-RubB), determined in the zinc-substituted form are reported. The zinc-substituted protein was prepared by expressing Mt-RubB in minimal medium containing excess zinc acetate. Size-exclusion chromatography and NMR spectroscopy indicated that Mt-RubB was a monomer in solution. The structure (PDB entry 2kn9) was generally similar to those of other rubredoxins, containing a three-stranded antiparallel ß-sheet (ß2-ß1-ß3) and a metal tetrahedrally coordinated to the S atoms of four cysteine residues (Cys9, Cys12, Cys42 and Cys45). The first pair of cysteine residues is at the C-terminal end of the first ß-strand and the second pair of cysteine residues is towards the C-terminal end of the loop between ß2 and ß3. The structure shows the metal buried deeply within the protein, an observation that is supported by the inability to remove the metal with excess EDTA at room temperature. Circular dichroism spectroscopy shows that this stability extends to high temperature, with essentially no change being observed in the CD spectrum of Mt-RubB upon heating to 353 K.


Assuntos
Mycobacterium tuberculosis/química , Rubredoxinas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Estrutura Terciária de Proteína
6.
Artigo em Inglês | MEDLINE | ID: mdl-21904042

RESUMO

The establishment of an efficient and reliable protein-purification pipeline is essential for the success of structural genomic projects. The SSGCID Protein Purification Group at the University of Washington (UW-PPG) has established a robust protein-purification pipeline designed to purify 400 proteins per year at a rate of eight purifications per week. The pipeline was implemented using two ÄKTAexplorer 100 s and four ÄKTAprimes to perform immobilized metal-affinity chromatography (IMAC) and size-exclusion chromatography. Purifications were completed in a period of 5 d and yielded an average of 53 mg highly purified protein. This paper provides a detailed description of the methods used to purify, characterize and store SSGCID proteins. Some of the purified proteins were treated with 3C protease, which was expressed and purified by UW-PPG using a similar protocol, to cleave non-native six-histidine tags. The cleavage was successful in 94% of 214 attempts. Cleaved proteins yielded 2.9% more structures than uncleaved six-histidine-tagged proteins. This 2.9% improvement may seem small, but over the course of the project the structure output from UW-PPG is thus predicted to increase from 260 structures to 318 structures. Therefore, the outlined protocol with 3C cleavage and subtractive IMAC has been shown to be a highly efficient method for the standardized purification of recombinant proteins for structure determination via X-ray crystallography.


Assuntos
Genômica , Proteínas/isolamento & purificação , Proteínas/metabolismo , Doenças Transmissíveis , Proteínas/genética
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1078-83, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21904053

RESUMO

Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg(2+)-bound state was determined at 2.1 Å resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the α-helix of the highly conserved `Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed ß-sheet with the central two ß-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg(2+), is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T(m) of 333 K.


Assuntos
Bartonella henselae/enzimologia , Magnésio/química , Pirofosfatases/química , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Pirofosfatases/metabolismo , Homologia Estrutural de Proteína , Nudix Hidrolases
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1106-12, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21904058

RESUMO

The crystal structure of a ß-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein.


Assuntos
Brucella melitensis/enzimologia , beta-Lactamases/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
9.
J Struct Funct Genomics ; 11(1): 91-100, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20364333

RESUMO

Structural genomics discovery projects require ready access to both X-ray diffraction and NMR spectroscopy which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large multi acre synchrotron facilities for data collection. In this paper we report on the development and use of the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam.


Assuntos
Proteínas/química , Difração de Raios X/métodos , Aminoácido Oxirredutases , Proteínas de Transporte , Proteína H do Complexo Glicina Descarboxilase , Complexos Multienzimáticos , Muramidase , Mycobacterium tuberculosis/química , Síncrotrons , Transferases , Difração de Raios X/instrumentação , Raios X
10.
J Struct Biol ; 171(2): 238-43, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20438846

RESUMO

The 2.1A crystal structure of tryptophanyl-tRNA synthetase (TrpRS) from the diplomonad Giardia lamblia reveals that the N-terminus of this class I aminoacyl-tRNA synthetase forms a 16-residue alpha-helix. This helix replaces a beta-hairpin that is required by human TrpRS for normal activity and has been inferred to play a similar role in all eukaryotic TrpRS. The primary sequences of TrpRS homologs from several basal eukaryotes including Giardia lack a set of three residues observed to stabilize interactions with this beta-hairpin in the human TrpRS. Thus the present structure suggests that the activation reaction mechanism of TrpRS from the basal eukaryote G. lamblia differs from that of higher eukaryotes. Furthermore, the protein as observed in the crystal forms an (alpha(2))(2) homotetramer. The canonical dimer interface observed in all previous structures of tryptophanyl-tRNA synthetases is maintained, but in addition each N-terminal alpha-helix reciprocally interlocks with the equivalent helix from a second dimer to form a dimer of dimers. Although we have no evidence for tetramer formation in vivo, modeling indicates that the crystallographically observed tetrameric structure would be compatible with the tRNA binding mode used by dimeric TrpRS and TyrRS.


Assuntos
Giardia lamblia/enzimologia , Triptofano-tRNA Ligase/química , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Difração de Raios X
11.
J Struct Biol ; 171(1): 64-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20347992

RESUMO

The great power of protein crystallography to reveal biological structure is often limited by the tremendous effort required to produce suitable crystals. A hybrid crystal growth predictive model is presented that combines both experimental and sequence-derived data from target proteins, including novel variables derived from physico-chemical characterization such as R(30), the ratio between a protein's DSF intensity at 30°C and at T(m). This hybrid model is shown to be more powerful than sequence-based prediction alone - and more likely to be useful for prioritizing and directing the efforts of structural genomics and individual structural biology laboratories.


Assuntos
Modelos Moleculares , Proteínas/química , Cristalização , Cristalografia por Raios X , Interpretação Estatística de Dados , Análise de Sequência de Proteína
12.
Anal Biochem ; 399(2): 268-75, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20018159

RESUMO

This study sought to determine whether the quality of enzyme preparations can be determined from their melting curves, which may easily be obtained using a fluorescent probe and a standard reverse transcription-polymerase chain reaction (RT-PCR) machine. Thermal melt data on 31 recombinant enzymes from Plasmodium parasites were acquired by incrementally heating them to 90 degrees C and measuring unfolding with a fluorescent dye. Activity assays specific to each enzyme were also performed. Four of the enzymes were denatured to varying degrees with heat and sodium dodecyl sulfate (SDS) prior to the thermal melt and activity assays. In general, melting curve quality was correlated with enzyme activity; enzymes with high-quality curves were found almost uniformly to be active, whereas those with lower quality curves were more varied in their catalytic performance. Inspection of melting curves of bovine xanthine oxidase and Entamoeba histolytica cysteine protease 1 allowed active stocks to be distinguished from inactive stocks, implying that a relationship between melting curve quality and activity persists over a wide range of experimental conditions and species. Our data suggest that melting curves can help to distinguish properly folded proteins from denatured ones and, therefore, may be useful in selecting stocks for further study and in optimizing purification procedures for specific proteins.


Assuntos
Enzimas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Bovinos , Cisteína Proteases/química , Entamoeba histolytica/enzimologia , Ensaios Enzimáticos , Corantes Fluorescentes/química , Temperatura Alta , Transição de Fase , Plasmodium/enzimologia , Desnaturação Proteica , Dodecilsulfato de Sódio/química , Xantina Oxidase/química
13.
J Biomol Screen ; 14(6): 700-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19470714

RESUMO

In the past decade, thermal melt/thermal shift assays have become a common tool for identifying ligands and other factors that stabilize specific proteins. Increased stability is indicated by an increase in the protein's melting temperature (Tm). In optimizing the assays for subsequent screening of compound libraries, it is important to minimize the variability of Tm measurements so as to maximize the assay's ability to detect potential ligands. The authors present an investigation of Tm variability in recombinant proteins from Plasmodium parasites. Ligands of Plasmodium proteins are particularly interesting as potential starting points for drugs for malaria, and new drugs are urgently needed. A single standard buffer (100 mM HEPES [pH 7.5], 150 mM NaCl) permitted estimation of Tm for 58 of 61 Plasmodium proteins tested. However, with several proteins, Tm could not be measured with a consistency suitable for high-throughput screening unless alternative protein-specific buffers were employed. The authors conclude that buffer optimization to minimize variability in Tm measurements increases the success of thermal melt screens involving proteins for which a standard buffer is suboptimal.


Assuntos
Bioensaio/métodos , Plasmodium/química , Proteínas de Protozoários/química , Bibliotecas de Moléculas Pequenas/análise , Temperatura de Transição , Animais , Soluções Tampão , Ligantes
14.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 11): 1116-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19020349

RESUMO

The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, approximately 10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive ;hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.


Assuntos
Burkholderia pseudomallei , Cristalografia por Raios X/instrumentação , Sistemas Microeletromecânicos , Técnicas Analíticas Microfluídicas , Microfluídica/instrumentação , Animais , Galinhas , Cristalização , Cristalografia por Raios X/métodos , Microfluídica/métodos , Estrutura Molecular , Muramidase/química , Muramidase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
15.
Antimicrob Agents Chemother ; 52(10): 3710-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18644955

RESUMO

Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and altered parasite morphology, demonstrating their requirement for cell survival. Since the growth arrest after RNA interference appeared to be more profound for T. brucei GSK-3 "short" (Tb10.161.3140) than for T. brucei GSK-3 "long" (Tb927.7.2420), we focused on T. brucei GSK-3 short for further studies. T. brucei GSK-3 short with an N-terminal maltose-binding protein fusion was cloned, expressed, and purified in a functional form. The potency of a GSK-3-focused inhibitor library against the recombinant enzyme of T. brucei GSK-3 short, as well as bloodstream-form parasites, was evaluated with the aim of determining if compounds that inhibit enzyme activity could also block the parasites' growth and proliferation. Among the compounds active against the cell, there was an excellent correlation between activity inhibiting the T. brucei GSK-3 short enzyme and the inhibition of T. brucei growth. Thus, there is reasonable genetic and chemical validation of GSK-3 short as a drug target for T. brucei. Finally, selective inhibition may be required for therapy targeting the GSK-3 enzyme, and a molecular model of the T. brucei GSK-3 short enzyme suggests that compounds that selectively inhibit T. brucei GSK-3 short over the human GSK-3 enzymes can be found.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Animais , Sequência de Bases , Primers do DNA/genética , DNA de Protozoário/genética , Genes de Protozoários , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Trypanosoma brucei brucei/genética
16.
Tuberculosis (Edinb) ; 95(2): 142-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613812

RESUMO

High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1 Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Proteínas de Bactérias/química , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Ativação Enzimática , Genômica/métodos , Humanos , Modelos Moleculares , Mycobacterium/classificação , Mycobacterium/enzimologia , Mycobacterium/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Relação Quantitativa Estrutura-Atividade , Especificidade da Espécie
17.
Mol Biochem Parasitol ; 177(1): 20-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21255615

RESUMO

Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNA(Trp) molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNA(Trp) after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNA(Trp) recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual TrpRS from Giardia, these protozoan structures broaden our perspective on the extent of structural variation found in eukaryotic TrpRS homologs.


Assuntos
Cryptosporidium parvum/enzimologia , Entamoeba histolytica/enzimologia , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Triptofano-tRNA Ligase/química , Sequência de Aminoácidos , Sítios de Ligação , Cryptosporidium parvum/química , Cryptosporidium parvum/genética , Cristalografia por Raios X , Entamoeba histolytica/química , Entamoeba histolytica/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
18.
Mol Biochem Parasitol ; 176(2): 98-108, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195115

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3ß (HsGSK-3ß) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Motivos de Aminoácidos/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli , Expressão Gênica , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Cinética , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmania infantum/metabolismo , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/genética , Leishmaniose Visceral/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
19.
Biochimie ; 93(3): 570-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21144880

RESUMO

Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions of people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg(2+) ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of Escherichia coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNA(Met) complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Difosfatos/metabolismo , Leishmania major/enzimologia , Metionina tRNA Ligase/química , Metionina tRNA Ligase/metabolismo , Metionina/análogos & derivados , Nucleotídeos de Adenina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Difosfatos/química , Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , Humanos , Magnésio/metabolismo , Metionina/química , Metionina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Triptofano-tRNA Ligase/metabolismo
20.
J Mol Biol ; 409(2): 159-76, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21420975

RESUMO

The single tyrosyl-tRNA synthetase (TyrRS) gene in trypanosomatid genomes codes for a protein that is twice the length of TyrRS from virtually all other organisms. Each half of the double-length TyrRS contains a catalytic domain and an anticodon-binding domain; however, the two halves retain only 17% sequence identity to each other. The structural and functional consequences of this duplication and divergence are unclear. TyrRS normally forms a homodimer in which the active site of one monomer pairs with the anticodon-binding domain from the other. However, crystal structures of Leishmania major TyrRS show that, instead, the two halves of a single molecule form a pseudo-dimer resembling the canonical TyrRS dimer. Curiously, the C-terminal copy of the catalytic domain has lost the catalytically important HIGH and KMSKS motifs characteristic of class I aminoacyl-tRNA synthetases. Thus, the pseudo-dimer contains only one functional active site (contributed by the N-terminal half) and only one functional anticodon recognition site (contributed by the C-terminal half). Despite biochemical evidence for negative cooperativity between the two active sites of the usual TyrRS homodimer, previous structures have captured a crystallographically-imposed symmetric state. As the L. major TyrRS pseudo-dimer is inherently asymmetric, conformational variations observed near the active site may be relevant to understanding how the state of a single active site is communicated across the dimer interface. Furthermore, substantial differences between trypanosomal TyrRS and human homologs are promising for the design of inhibitors that selectively target the parasite enzyme.


Assuntos
Flavonoides/metabolismo , Leishmania major/enzimologia , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Tirosina/análogos & derivados , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Flavonóis , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA