Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 284: 112017, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516981

RESUMO

The preservation of water and wastewater treatment has become a global challenge. The concentration of anions such as chlorides, fluorides, cyanides, and perchlorates above the permitted levels in water is harmful to human and aquatic life. Chlorfenapyr is an insecticide that contains the aforesaid anions and is abundantly present in industrial wastewater. This research is focused on the removal of these anions from wastewater by ethylene glycol functionalized benzyl dimethyl tetradecyl ammonium bromide immobilized on soluble polymer anion exchange membrane. The real wastewater samples rich in chlorfenapyr from two different sources (industrial and pond) were analyzed. Membrane efficiency was more than 50 ppm for each anion in a single fold. The double folds of membrane showed enhanced uptake and separation efficiency for chloride, fluoride, and cyanide from wastewater samples between 0.01 and 0.02 ppm down to lethal concenetrations values (LD 50). The membrane shows maximum separation efficiency between the pH ranges of 6-7. The interference effect on membrane separation efficiency showed that the replacement ability of sample anions was in the order of fluoride > chloride > perchlorate > cyanide. This high replacement efficiency of fluoride and chloride is attributed to the more chemical interactions of these anions with membrane.


Assuntos
Etilenoglicol , Águas Residuárias , Ânions , Brometos , Humanos , Piretrinas , Compostos de Amônio Quaternário
2.
Sci Rep ; 12(1): 2493, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169158

RESUMO

In the present work, nonwoven cotton fabric was modified for antibacterial applications using low-cost and eco-friendly precursors. The treatment of fabric with alkali leads to the formation of active sites for surface modification, followed by dip coating with silver nanoparticles and chitosan. The surface was chlorinated in the next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without affecting strength and integrity of fabric. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA